Unknown

Dataset Information

0

Task rule and choice are reflected by layer-specific processing in rodent auditory cortical microcircuits.


ABSTRACT: The primary auditory cortex (A1) is an essential, integrative node that encodes the behavioral relevance of acoustic stimuli, predictions, and auditory-guided decision-making. However, the realization of this integration with respect to the cortical microcircuitry is not well understood. Here, we characterize layer-specific, spatiotemporal synaptic population activity with chronic, laminar current source density analysis in Mongolian gerbils (Meriones unguiculatus) trained in an auditory decision-making Go/NoGo shuttle-box task. We demonstrate that not only sensory but also task- and choice-related information is represented in the mesoscopic neuronal population code of A1. Based on generalized linear-mixed effect models we found a layer-specific and multiplexed representation of the task rule, action selection, and the animal's behavioral options as accumulating evidence in preparation of correct choices. The findings expand our understanding of how individual layers contribute to the integrative circuit in the sensory cortex in order to code task-relevant information and guide sensory-based decision-making.

SUBMITTER: Zempeltzi MM 

PROVIDER: S-EPMC7335110 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Task rule and choice are reflected by layer-specific processing in rodent auditory cortical microcircuits.

Zempeltzi Marina M MM   Kisse Martin M   Brunk Michael G K MGK   Glemser Claudia C   Aksit Sümeyra S   Deane Katrina E KE   Maurya Shivam S   Schneider Lina L   Ohl Frank W FW   Deliano Matthias M   Happel Max F K MFK  

Communications biology 20200703 1


The primary auditory cortex (A1) is an essential, integrative node that encodes the behavioral relevance of acoustic stimuli, predictions, and auditory-guided decision-making. However, the realization of this integration with respect to the cortical microcircuitry is not well understood. Here, we characterize layer-specific, spatiotemporal synaptic population activity with chronic, laminar current source density analysis in Mongolian gerbils (Meriones unguiculatus) trained in an auditory decisio  ...[more]

Similar Datasets

| S-EPMC4175007 | biostudies-other
| S-EPMC8311662 | biostudies-literature
| S-EPMC6504118 | biostudies-literature
| S-EPMC6400225 | biostudies-literature
| S-EPMC4157809 | biostudies-literature
| S-EPMC3140463 | biostudies-literature
| S-EPMC4537443 | biostudies-literature
| S-EPMC2604844 | biostudies-other
| S-EPMC5091907 | biostudies-literature
| S-EPMC7417283 | biostudies-literature