Unknown

Dataset Information

0

Developmentally Programmed Tankyrase Activity Upregulates β-Catenin and Licenses Progression of Embryonic Genome Activation.


ABSTRACT: Embryonic genome activation (EGA) is orchestrated by an intrinsic developmental program initiated during oocyte maturation with translation of stored maternal mRNAs. Here, we show that tankyrase, a poly(ADP-ribosyl) polymerase that regulates β-catenin levels, undergoes programmed translation during oocyte maturation and serves an essential role in mouse EGA. Newly translated TNKS triggers proteasomal degradation of axin, reducing targeted destruction of β-catenin and promoting β-catenin-mediated transcription of target genes, including Myc. MYC mediates ribosomal RNA transcription in 2-cell embryos, supporting global protein synthesis. Suppression of tankyrase activity using knockdown or chemical inhibition causes loss of nuclear β-catenin and global reductions in transcription and histone H3 acetylation. Chromatin and transcriptional profiling indicate that development arrests prior to the mid-2-cell stage, mediated in part by reductions in β-catenin and MYC. These findings indicate that post-transcriptional regulation of tankyrase serves as a ligand-independent developmental mechanism for post-translational β-catenin activation and is required to complete EGA.

SUBMITTER: Gambini A 

PROVIDER: S-EPMC7335218 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2020-05-21 | GSE123815 | GEO
| PRJNA509915 | ENA
| S-EPMC2516408 | biostudies-literature
| S-EPMC4980433 | biostudies-literature
| S-EPMC2794231 | biostudies-literature
2020-05-06 | GSE145661 | GEO
| S-EPMC6685591 | biostudies-literature
| S-EPMC5362519 | biostudies-literature
| S-EPMC3624169 | biostudies-literature
| S-EPMC8478945 | biostudies-literature