Unknown

Dataset Information

0

Accuracy and efficiency of an artificial intelligence tool when counting breast mitoses.


ABSTRACT: BACKGROUND:The mitotic count in breast carcinoma is an important prognostic marker. Unfortunately substantial inter- and intra-laboratory variation exists when pathologists manually count mitotic figures. Artificial intelligence (AI) coupled with whole slide imaging offers a potential solution to this problem. The aim of this study was to accordingly critique an AI tool developed to quantify mitotic figures in whole slide images of invasive breast ductal carcinoma. METHODS:A representative H&E slide from 320 breast invasive ductal carcinoma cases was scanned at 40x magnification. Ten expert pathologists from two academic medical centers labeled mitotic figures in whole slide images to train and validate an AI algorithm to detect and count mitoses. Thereafter, 24 readers of varying expertise were asked to count mitotic figures with and without AI support in 140 high-power fields derived from a separate dataset. Their accuracy and efficiency of performing these tasks were calculated and statistical comparisons performed. RESULTS:For each experience level the accuracy, precision and sensitivity of counting mitoses by users improved with AI support. There were 21 readers (87.5%) that identified more mitoses using AI support and 13 reviewers (54.2%) that decreased the quantity of falsely flagged mitoses with AI. More time was spent on this task for most participants when not provided with AI support. AI assistance resulted in an overall time savings of 27.8%. CONCLUSIONS:This study demonstrates that pathology end-users were more accurate and efficient at quantifying mitotic figures in digital images of invasive breast carcinoma with the aid of AI. Higher inter-pathologist agreement with AI assistance suggests that such algorithms can also help standardize practice. Not surprisingly, there is much enthusiasm in pathology regarding the prospect of using AI in routine practice to perform mundane tasks such as counting mitoses.

SUBMITTER: Pantanowitz L 

PROVIDER: S-EPMC7335442 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Accuracy and efficiency of an artificial intelligence tool when counting breast mitoses.

Pantanowitz Liron L   Hartman Douglas D   Qi Yan Y   Cho Eun Yoon EY   Suh Beomseok B   Paeng Kyunghyun K   Dhir Rajiv R   Michelow Pamela P   Hazelhurst Scott S   Song Sang Yong SY   Cho Soo Youn SY  

Diagnostic pathology 20200704 1


<h4>Background</h4>The mitotic count in breast carcinoma is an important prognostic marker. Unfortunately substantial inter- and intra-laboratory variation exists when pathologists manually count mitotic figures. Artificial intelligence (AI) coupled with whole slide imaging offers a potential solution to this problem. The aim of this study was to accordingly critique an AI tool developed to quantify mitotic figures in whole slide images of invasive breast ductal carcinoma.<h4>Methods</h4>A repre  ...[more]

Similar Datasets

| S-EPMC8082372 | biostudies-literature
| S-EPMC8212438 | biostudies-literature
| S-EPMC8409323 | biostudies-literature
| S-EPMC7263320 | biostudies-literature
| S-EPMC8217761 | biostudies-literature
| S-EPMC10033575 | biostudies-literature
| S-EPMC8200265 | biostudies-literature
| S-EPMC11002485 | biostudies-literature
| S-EPMC8427857 | biostudies-literature
| S-EPMC9378575 | biostudies-literature