Unknown

Dataset Information

0

Bond-length distributions for ions bonded to oxygen: results for the transition metals and quantification of the factors underlying bond-length variation in inorganic solids.


ABSTRACT: Bond-length distributions are examined for 63 transition metal ions bonded to O2- in 147 configurations, for 7522 coordination polyhedra and 41?488 bond distances, providing baseline statistical knowledge of bond lengths for transition metals bonded to O2-. A priori bond valences are calculated for 140 crystal structures containing 266 coordination polyhedra for 85 transition metal ion configurations with anomalous bond-length distributions. Two new indices, ?topol and ?cryst, are proposed to quantify bond-length variation arising from bond-topological and crystallographic effects in extended solids. Bond-topological mechanisms of bond-length variation are (1) non-local bond-topological asymmetry and (2) multiple-bond formation; crystallographic mechanisms are (3) electronic effects (with an inherent focus on coupled electronic vibrational degeneracy in this work) and (4) crystal-structure effects. The indices ?topol and ?cryst allow one to determine the primary cause(s) of bond-length variation for individual coordination polyhedra and ion configurations, quantify the distorting power of cations via electronic effects (by subtracting the bond-topological contribution to bond-length variation), set expectation limits regarding the extent to which functional properties linked to bond-length variation may be optimized in a given crystal structure (and inform how optimization may be achieved) and more. These indices further provide an equal footing for comparing bond-length variation and the distorting power of ions across ligand types, including resolution for heteroligand polyhedra. The observation of multiple bonds is found to be primarily driven by the bond-topological requirements of crystal structures in solids. However, sometimes multiple bonds are observed to form as a result of electronic effects (e.g. the pseudo Jahn-Teller effect, PJTE); resolution of the origins of multiple-bond formation follows calculation of the ?topol and ?cryst indices on a structure-by-structure basis. Non-local bond-topological asymmetry is the most common cause of bond-length variation in transition metal oxides and oxysalts, followed closely by the PJTE. Non-local bond-topological asymmetry is further suggested to be the most widespread cause of bond-length variation in the solid state, with no a priori limitations with regard to ion identity. Overall, bond-length variations resulting from the PJTE are slightly larger than those resulting from non-local bond-topological asymmetry, comparable with those resulting from the strong JTE, and less than those induced by ?-bond formation. From a comparison of a priori and observed bond valences for ?150 coordination polyhedra in which the strong JTE or the PJTE is the main reason underlying bond-length variation, the JTE is found not to have a cooperative relation with the bond-topological requirements of crystal structures. The magnitude of bond-length variation caused by the PJTE decreases in the following order for octahedrally coordinated d 0 transition metal oxyanions: Os8+ > Mo6+ > W6+ >> V5+ > Nb5+ > Ti4+ > Ta5+ > Hf4+ > Zr4+ > Re7+ >> Y3+ > Sc3+. Such ranking varies by coordination number; for [4] it is Re7+ > Ti4+ > V5+ > W6+ > Mo6+ > Cr6+ > Os8+ >> Mn7+; for [5] it is Os8+ > Re7+ > Mo6+ > Ti4+ > W6+ > V5+ > Nb5+. It is concluded that non-octahedral coordinations of d 0 ion configurations are likely to occur with bond-length variations that are similar in magnitude to their octahedral counterparts. However, smaller bond-length variations are expected from the PJTE for non-d 0 transition metal oxyanions.

SUBMITTER: Gagne OC 

PROVIDER: S-EPMC7340253 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bond-length distributions for ions bonded to oxygen: results for the transition metals and quantification of the factors underlying bond-length variation in inorganic solids.

Gagné Olivier Charles OC   Hawthorne Frank Christopher FC  

IUCrJ 20200609 Pt 4


Bond-length distributions are examined for 63 transition metal ions bonded to O<sup>2-</sup> in 147 configurations, for 7522 coordination polyhedra and 41 488 bond distances, providing baseline statistical knowledge of bond lengths for transition metals bonded to O<sup>2-</sup>. <i>A priori</i> bond valences are calculated for 140 crystal structures containing 266 coordination polyhedra for 85 transition metal ion configurations with anomalous bond-length distributions. Two new indices, Δ<sub>to  ...[more]

Similar Datasets

| S-EPMC4971548 | biostudies-literature
| S-EPMC5798398 | biostudies-other
| S-EPMC5798399 | biostudies-other
| S-EPMC5744403 | biostudies-literature
| S-EPMC3543116 | biostudies-literature
| S-EPMC3325778 | biostudies-literature
| S-EPMC8664825 | biostudies-literature
| S-EPMC9040908 | biostudies-literature
| S-EPMC5681686 | biostudies-literature
| S-EPMC1950532 | biostudies-literature