Project description:Our objective was to characterize individual differences in fear conditioning and extinction in an outbred rat strain, to test behavioral predictors of these individual differences, and to assess their heritability. We fear-conditioned 100 Long-Evans rats, attempted to extinguish fear the next day, and tested extinction recall on the third day. The distribution of freezing scores after fear conditioning was skewed, with most rats showing substantial freezing; after fear extinction, the distribution was bimodal with most rats showing minimal freezing, but a substantial portion showing maximal freezing. Longer rearing episodes measured prior to conditioning predicted less freezing at the beginning of extinction, but differences in extinction learning were not predicted by any baseline exploratory behaviors. We tested the heritability of extinction differences by breeding rats from the top and bottom 20% of freezing scores during extinction recall. We then ran the offspring through the same conditioning/extinction procedure, with the addition of recording ultrasonic vocalizations throughout training and testing. Only a minority of rats emitted distress vocalizations during fear acquisition, but the incidence was less frequent in the offspring of good extinguishers than in poor extinguishers or randomly bred controls. The occurrence of distress vocalizations during acquisition predicted higher levels of freezing during fear recall regardless of breeding line, but the relationship between vocalization and freezing was no longer evident following extinction training, at which point freezing levels were influenced only by breeding and not by vocalization. The heritability (h(2)) of extinction recall was estimated at 0.36, consistent with human estimates.
Project description:Memory formation is key for brain functioning. Uncovering the memory mechanisms is helping us to better understand neural processes in health and disease. Moreover, more specific treatments for fear-related disorders such as posttraumatic stress disorder and phobias may help to decrease their negative impact on mental health. In this line, the Tachykinin 2 (Tac2) pathway in the central amygdala (CeA) has been shown to be sufficient and necessary for the modulation of fear memory consolidation. CeA-Tac2 antagonism and its pharmacogenetic temporal inhibition impair fear memory in male mice. Surprisingly, we demonstrate here the opposite effect of Tac2 blockade on enhancing fear memory consolidation in females. Furthermore, we show that CeA-testosterone in males, CeA-estradiol in females and Akt/GSK3β/β-Catenin signaling both mediate the opposite-sex differential Tac2 pathway regulation of fear memory.
Project description:Only a portion of the population exposed to trauma will develop persistent emotional alterations characteristic of posttraumatic stress disorder (PTSD), which illustrates the necessity for identifying vulnerability factors and novel pharmacotherapeutic alternatives. Interestingly, clinical evidence suggests that novelty seeking is a good predictor for vulnerability to the development of excessive and persistent fear. Here, we first tested this hypothesis by analyzing contextual and cued fear responses of rats selected for their high (high responders, HR) or low (low responders, LR) exploration of a novel environment, indicator of novelty seeking. While HR and LR rats exhibited similar sensitivity to the shock and cued fear memory retention, fewer extinction sessions were required in HR than LR animals to reach extinction, indicating faster contextual and cued memory extinction. In a second part, we found an effective disruption of contextual fear reconsolidation by the N-methyl-d-aspartate receptor antagonist ketamine, associated with a down-regulation of early growth response 1 (Egr1) in the hippocampal CA1 area, and up-regulation of brain-derived neurotrophic factor (Bdnf) mRNA levels in the prelimbic and infralimbic cortices. Altogether, these data demonstrate a link between novelty seeking and conditioned fear extinction, and highlight a promising novel role of ketamine in affecting established fear memory.
Project description:It remains unexplored in the field of fear memory whether functional neuronal connectivity between two brain areas is necessary for one sex but not the other. Here, we show that chemogenetic silencing of centromedial (CeM)-Tac2 fibers in the lateral posterior BNST (BNSTpl) decreased fear memory consolidation in male mice but not females. Optogenetic excitation of CeM-Tac2 fibers in the BNSTpl exhibited enhanced inhibitory postsynaptic currents in males compared to females. In vivo calcium imaging analysis revealed a sex-dimorphic fear memory engram in the BNSTpl. Furthermore, in humans, the single-nucleotide polymorphism (SNP) in the Tac2 receptor (rs2765) (TAC3R) decreased CeM-BNST connectivity in a fear task, impaired fear memory consolidation, and increased the expression of the TAC3R mRNA in AA-carrier men but not in women. These sex differences in critical neuronal circuits underlying fear memory formation may be relevant to human neuropsychiatric disorders with fear memory alterations such as posttraumatic stress disorder.
Project description:Individuals are consistently better at recognizing own-race faces compared to other-race faces (other-race effect, ORE). One popular hypothesis is that this recognition memory ORE is caused by differential own- and other-race holistic processing, the simultaneous integration of part and configural face information into a coherent whole. Holistic processing may create a more rich, detailed memory representation of own-race faces compared to other-race faces. Despite several studies showing that own-race faces are processed more holistically than other-race faces, studies have yet to link the holistic processing ORE and the recognition memory ORE. In the current study, we sought to use a more valid method of analyzing individual differences in holistic processing by using regression to statistically remove the influence of the control condition (part trials in the part-whole task) from the condition of interest (whole trials in the part-whole task). We also employed regression to separately examine the two components of the ORE: own-race advantage (regressing other-race from own-race performance) and other-race decrement (regressing own-race from other-race performance). First, we demonstrated that own-race faces were processed more holistically than other-race faces, particularly the eye region. Notably, using regression, we showed a significant association between the own-race advantage in recognition memory and the own-race advantage in holistic processing and that these associations were weaker when examining the other-race decrement. We also demonstrated that performance on own- and other-race faces across all of our tasks was highly correlated, suggesting that the differences we found between own- and other-race faces are quantitative rather than qualitative. Together, this suggests that own- and other-race faces recruit largely similar mechanisms, that own-race faces more thoroughly engage holistic processing, and that this greater engagement of holistic processing is significantly associated with the own-race advantage in recognition memory.
Project description:Individuals differ greatly in their ability to remember the details of past events, yet little is known about the brain processes that explain such individual differences in a healthy young population. Previous research suggests that episodic memory relies on functional communication among ventral regions of the default mode network ("DMN-C") that are strongly interconnected with the medial temporal lobes. In this study, we investigated whether the intrinsic functional connectivity of the DMN-C subnetwork is related to individual differences in memory ability, examining this relationship across 243 individuals (ages 18-50 years) from the openly available Cambridge Center for Aging and Neuroscience (Cam-CAN) dataset. We first estimated each participant's whole-brain intrinsic functional brain connectivity by combining data from resting-state, movie-watching, and sensorimotor task scans to increase statistical power. We then examined whether intrinsic functional connectivity predicted performance on a narrative recall task. We found no evidence that functional connectivity of the DMN-C, with itself, with other related DMN subnetworks, or with the rest of the brain, was related to narrative recall. Exploratory connectome-based predictive modeling (CBPM) analyses of the entire connectome revealed a whole-brain multivariate pattern that predicted performance, although these changes were largely outside of known memory networks. These results add to emerging evidence suggesting that individual differences in memory cannot be easily explained by brain differences in areas typically associated with episodic memory function.
Project description:Learning is a critical behavioral process that is influenced by many neurobiological systems. We and others have reported that acetylcholinergic signaling plays a vital role in learning capabilities, and it is especially important for contextual fear learning. Since cholinergic signaling is affected by genetic background, we examined the genetic relationship between activity levels of acetylcholinesterase (AChE), the primary enzyme involved in the acetylcholine metabolism, and learning using a panel of 20 inbred mouse strains. We measured conditioned fear behavior and AChE activity in the dorsal hippocampus, ventral hippocampus, and cerebellum. Acetylcholinesterase activity varied among inbred mouse strains in all three brain regions, and there were significant inter-strain differences in contextual and cued fear conditioning. There was an inverse correlation between fear conditioning outcomes and AChE levels in the dorsal hippocampus. In contrast, the ventral hippocampus and cerebellum AChE levels were not correlated with fear conditioning outcomes. These findings strengthen the link between acetylcholine activity in the dorsal hippocampus and learning, and they also support the premise that the dorsal hippocampus and ventral hippocampus are functionally discrete.
Project description:Spontaneous eye blink rate (sEBR) has been linked to striatal dopamine function and to how individuals make value-based choices after a period of reinforcement learning (RL). While sEBR is thought to reflect how individuals learn from the negative outcomes of their choices, this idea has not been tested explicitly. This study assessed how individual differences in sEBR relate to learning by focusing on the cognitive processes that drive RL. Using Bayesian latent mixture modelling to quantify the mapping between RL behaviour and its underlying cognitive processes, we were able to differentiate low and high sEBR individuals at the level of these cognitive processes. Further inspection of these cognitive processes indicated that sEBR uniquely indexed explore-exploit tendencies during RL: lower sEBR predicted exploitative choices for high valued options, whereas higher sEBR predicted exploration of lower value options. This relationship was additionally supported by a network analysis where, notably, no link was observed between sEBR and how individuals learned from negative outcomes. Our findings challenge the notion that sEBR predicts learning from negative outcomes during RL, and suggest that sEBR predicts individual explore-exploit tendencies. These then influence value sensitivity during choices to support successful performance when facing uncertain reward.
Project description:Adolescence is a time of intensified emotional experiences, during which anxiety and stress-related disorders peak. The most effective behavioral therapies for treating these disorders share exposure-based techniques as a core component. Exposure-based therapies build on the principles of fear extinction learning and involve desensitizing the individual to cues that trigger anxiety. Yet, recent evidence shows an adolescent-specific diminished capacity to extinguish fear responses, suggesting that adolescents may respond less well to exposure-based therapies than other age groups. Here we demonstrate an alternative method for blocking the recall of fear memories in adolescents, building on principles of memory reconsolidation in adults. During memory reconsolidation, a memory that is recalled becomes labile during which time it can be updated. Prior research has shown that extinction training during memory reconsolidation attenuates the recovery of fear memory in human adults and in rodents. Using this method, we show attenuation of fear memory in adolescent humans. These findings have significant implications for treating one of the most vulnerable populations to anxiety and stress related disorders - adolescents - by optimizing exposure therapy based on principles of memory reconsolidation.
Project description:Similar to sleeping after learning, a brief period of wakeful resting after encoding new information supports memory retention in contrast to task-related cognition. Recent evidence suggests that working memory capacity (WMC) is related to sleep-dependent declarative memory consolidation. We tested whether WMC moderates the effect of a brief period of wakeful resting compared to performing a distractor task subsequent to encoding a word list. Participants encoded and immediately recalled a word list followed by either an 8 min wakeful resting period (eyes closed, relaxed) or by performing an adapted version of the d2 test of attention for 8 min. At the end of the experimental session (after 12-24 min) and again, after 7 days, participants were required to complete a surprise free recall test of both word lists. Our results show that interindividual differences in WMC are a central moderating factor for the effect of post-learning activity on memory retention. The difference in word retention between a brief period of wakeful resting versus performing a selective attention task subsequent to encoding increased in higher WMC individuals over a retention interval of 12-24 min, as well as over 7 days. This effect was reversed in lower WMC individuals. Our results extend findings showing that WMC seems not only to moderate sleep-related but also wakeful resting-related memory consolidation.