Unknown

Dataset Information

0

A Multi-Filovirus Vaccine Candidate: Co-Expression of Ebola, Sudan, and Marburg Antigens in a Single Vector.


ABSTRACT: In the infectious diseases field, protective immunity against individual virus species or strains does not always confer cross-reactive immunity to closely related viruses, leaving individuals susceptible to disease after exposure to related virus species. This is a significant hurdle in the field of vaccine development, in which broadly protective vaccines represent an unmet need. This is particularly evident for filoviruses, as there are multiple family members that can cause lethal haemorrhagic fever, including Zaire ebolavirus, Sudan ebolavirus, and Marburg virus. In an attempt to address this need, both pre-clinical and clinical studies previously used mixed or co-administered monovalent vaccines to prevent filovirus mediated disease. However, these multi-vaccine and multi-dose vaccination regimens do not represent a practical immunisation scheme when considering the target endemic areas. We describe here the development of a single multi-pathogen filovirus vaccine candidate based on a replication-deficient simian adenoviral vector. Our vaccine candidate encodes three different filovirus glycoproteins in one vector and induces strong cellular and humoral immunity to all three viral glycoproteins after a single vaccination. Crucially, it was found to be protective in a stringent Zaire ebolavirus challenge in guinea pigs in a one-shot vaccination regimen. This trivalent filovirus vaccine offers a tenable vaccine product that could be rapidly translated to the clinic to prevent filovirus-mediated viral haemorrhagic fever.

SUBMITTER: Sebastian S 

PROVIDER: S-EPMC7349952 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Multi-Filovirus Vaccine Candidate: Co-Expression of Ebola, Sudan, and Marburg Antigens in a Single Vector.

Sebastian Sarah S   Flaxman Amy A   Cha Kuan M KM   Ulaszewska Marta M   Gilbride Ciaran C   Sharpe Hannah H   Wright Edward E   Spencer Alexandra J AJ   Dowall Stuart S   Hewson Roger R   Gilbert Sarah S   Lambe Teresa T  

Vaccines 20200521 2


In the infectious diseases field, protective immunity against individual virus species or strains does not always confer cross-reactive immunity to closely related viruses, leaving individuals susceptible to disease after exposure to related virus species. This is a significant hurdle in the field of vaccine development, in which broadly protective vaccines represent an unmet need. This is particularly evident for filoviruses, as there are multiple family members that can cause lethal haemorrhag  ...[more]

Similar Datasets

| S-EPMC8416446 | biostudies-literature
| S-EPMC9508452 | biostudies-literature
| S-EPMC5201123 | biostudies-literature
| S-EPMC11233014 | biostudies-literature
| S-EPMC9413256 | biostudies-literature
| S-EPMC4702560 | biostudies-literature
| S-EPMC6394903 | biostudies-literature
| S-EPMC4635690 | biostudies-literature
| S-EPMC6171133 | biostudies-literature
| S-EPMC2268273 | biostudies-literature