Adaptation of the Marine Bacterium Shewanella baltica to Low Temperature Stress.
Ontology highlight
ABSTRACT: Marine bacteria display significant versatility in adaptation to variations in the environment and stress conditions, including temperature shifts. Shewanella baltica plays a major role in denitrification and bioremediation in the marine environment, but is also identified to be responsible for spoilage of ice-stored seafood. We aimed to characterize transcriptional response of S. baltica to cold stress in order to achieve a better insight into mechanisms governing its adaptation. We exposed bacterial cells to 8 °C for 90 and 180 min, and assessed changes in the bacterial transcriptome with RNA sequencing validated with the RT-qPCR method. We found that S. baltica general response to cold stress is associated with massive downregulation of gene expression, which covered about 70% of differentially expressed genes. Enrichment analysis revealed upregulation of only few pathways, including aminoacyl-tRNA biosynthesis, sulfur metabolism and the flagellar assembly process. Downregulation was observed for fatty acid degradation, amino acid metabolism and a bacterial secretion system. We found that the entire type II secretion system was transcriptionally shut down at low temperatures. We also observed transcriptional reprogramming through the induction of RpoE and repression of RpoD sigma factors to mediate the cold stress response. Our study revealed how diverse and complex the cold stress response in S. baltica is.
SUBMITTER: Kloska A
PROVIDER: S-EPMC7352654 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA