Unknown

Dataset Information

0

Eupatilin Promotes Cell Death by Calcium Influx through ER-Mitochondria Axis with SERPINB11 Inhibition in Epithelial Ovarian Cancer.


ABSTRACT: Ovarian cancer is the leading cause of gynecological cancer-related mortality. The anticancer effect of eupatilin, a family of flavonoids, is known in many cancer types, but it is unclear what mechanism it plays in ovarian cancer. In this study, eupatilin promoted cell death of ovarian cancer cells by activating caspases, cell cycle arrest, reactive oxygen species (ROS) generation, calcium influx, disruption of the endoplasmic reticulum (ER)-mitochondria axis with SERPINB11 inhibition, and downregulation of phosphoinositide 3-kinase (PI3K) and mitogen activated protein kinase (MAPK) pathways. Additionally, eupatilin-reduced SERPINB11 expression enhanced the effect of conventional chemotherapeutic agents against ovarian cancer cell progression. Cotreatment with siSERPINB11 and eupatilin increased calcium-ion-dependent apoptotic activity in ovarian cancer cells. Although there were no significant toxic effects of eupatilin on embryos, eupatilin completely inhibited tumorigenesis in a zebrafish xenograft model. In addition, eupatilin suppressed angiogenesis in zebrafish transgenic models. Collectively, downregulating SERPINB11 with eupatilin against cancer progression may improve therapeutic activity.

SUBMITTER: Lee JY 

PROVIDER: S-EPMC7353024 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Eupatilin Promotes Cell Death by Calcium Influx through ER-Mitochondria Axis with SERPINB11 Inhibition in Epithelial Ovarian Cancer.

Lee Jin-Young JY   Bae Hyocheol H   Yang Changwon C   Park Sunwoo S   Youn Byung-Soo BS   Kim Han-Soo HS   Song Gwonhwa G   Lim Whasun W  

Cancers 20200603 6


Ovarian cancer is the leading cause of gynecological cancer-related mortality. The anticancer effect of eupatilin, a family of flavonoids, is known in many cancer types, but it is unclear what mechanism it plays in ovarian cancer. In this study, eupatilin promoted cell death of ovarian cancer cells by activating caspases, cell cycle arrest, reactive oxygen species (ROS) generation, calcium influx, disruption of the endoplasmic reticulum (ER)-mitochondria axis with SERPINB11 inhibition, and downr  ...[more]

Similar Datasets

| S-EPMC11363740 | biostudies-literature
| S-EPMC10728102 | biostudies-literature
| S-EPMC5836131 | biostudies-literature
| S-EPMC3878224 | biostudies-literature
| S-EPMC6942206 | biostudies-literature
| S-EPMC7509857 | biostudies-literature
| S-EPMC2681372 | biostudies-literature
| S-EPMC4039088 | biostudies-literature
| S-EPMC6823474 | biostudies-literature
| S-EPMC6726250 | biostudies-literature