Diesel Exhaust Extract Exposure Induces Neuronal Toxicity by Disrupting Autophagy.
Ontology highlight
ABSTRACT: The vast majority of neurodegenerative disease cannot be attributed to genetic causes alone and as a result, there is significant interest in identifying environmental modifiers of disease risk. Epidemiological studies have supported an association between long-term exposure to air pollutants and disease risk. Here, we investigate the mechanisms by which diesel exhaust, a major component of air pollution, induces neurotoxicity. Using a zebrafish model, we found that exposure to diesel exhaust particulate extract caused behavioral deficits and a significant decrease in neuron number. The neurotoxicity was due, at least in part, to reduced autophagic flux, which is a major pathway implicated in neurodegeneration. This neuron loss occurred alongside an increase in aggregation-prone neuronal protein. Additionally, the neurotoxicity induced by diesel exhaust particulate extract in zebrafish was mitigated by co-treatment with the autophagy-inducing drug nilotinib. This study links environmental exposure to altered proteostasis in an in vivo model system. These results shed light on why long-term exposure to traffic-related air pollution increases neurodegenerative disease risk and open up new avenues for exploring therapies to mitigate environmental exposures and promote neuroprotection.
SUBMITTER: Barnhill LM
PROVIDER: S-EPMC7357183 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA