Ontology highlight
ABSTRACT: Background
The pine wood nematode (PWN; Bursaphelenchus xylophilus) is the most damaging biological pest in pine forest ecosystems in China. However, the pathogenic mechanism remains unclear. Tracheid cavitation induced by excess metabolism of volatile terpenes is a typical characteristic of pine trees infected by B. xylophilus. ?-pinene, one of the main volatile terpenes, influences PWN colonization and reproduction, stimulating pathogenicity during the early stages of infection. To elucidate the response mechanism of PWN to ?-pinene, pathogenesis, mortality, and reproduction rate were investigated under different concentrations of ?-pinene using a transcriptomics approach.Results
A low concentration of ?-pinene (BL, C??128.7?mg/ml) promoted reproduction. Comparison of PWN expression profiles under low (BL, 21.66?mg/ml) and high (BH, 214.5?mg/ml) ?-pinene concentrations at 48?h identified 659 and 418 differentially expressed genes (DEGs), respectively, compared with controls. Some key DEGs are potential regulators of ?-pinene via detoxification metabolism (cytochrome P450, UDP-glucuronosyltransferases and short-chain dehydrogenases), ion channel/transporter activity (unc and ATP-binding cassette families), and nuclear receptor -related genes. Gene Ontology enrichment analysis of DEGs revealed metabolic processes as the most significant biological processes, and catalytic activity as the most significant molecular function for both BL and BH samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) analysis showed that xenobiotics biodegradation and metabolism, carbohydrate metabolism, lipid metabolism, amino acid metabolism, metabolism of cofactors and vitamins, and transport and catabolism were the dominant terms in metabolism categories.Conclusion
In addition to detoxification via reduction/oxidation (redox) activity, PWN responds to ?-pinene through amino acid metabolism, carbohydrate metabolism, and other pathways including growth regulation and epidermal protein changes to overcome ?-pinene stress. This study lays a foundation for further exploring the pathogenic mechanism of PWN.
SUBMITTER: Li Y
PROVIDER: S-EPMC7358211 | biostudies-literature | 2020 Jul
REPOSITORIES: biostudies-literature
BMC genomics 20200713 1
<h4>Background</h4>The pine wood nematode (PWN; Bursaphelenchus xylophilus) is the most damaging biological pest in pine forest ecosystems in China. However, the pathogenic mechanism remains unclear. Tracheid cavitation induced by excess metabolism of volatile terpenes is a typical characteristic of pine trees infected by B. xylophilus. β-pinene, one of the main volatile terpenes, influences PWN colonization and reproduction, stimulating pathogenicity during the early stages of infection. To elu ...[more]