Ontology highlight
ABSTRACT: Background
Understanding the relation between the human microbiome and modulating factors, such as diet, may help researchers design intervention strategies that promote and maintain healthy microbial communities. Numerous analytical tools are available to help identify these relations, oftentimes via automated variable selection methods. However, available tools frequently ignore evolutionary relations among microbial taxa, potential relations between modulating factors, as well as model selection uncertainty.Results
We present MicroBVS, an R package for Dirichlet-tree multinomial models with Bayesian variable selection, for the identification of covariates associated with microbial taxa abundance data. The underlying Bayesian model accommodates phylogenetic structure in the abundance data and various parameterizations of covariates' prior probabilities of inclusion.Conclusion
While developed to study the human microbiome, our software can be employed in various research applications, where the aim is to generate insights into the relations between a set of covariates and compositional data with or without a known tree-like structure.
SUBMITTER: Koslovsky MD
PROVIDER: S-EPMC7359232 | biostudies-literature | 2020 Jul
REPOSITORIES: biostudies-literature
Koslovsky Matthew D MD Vannucci Marina M
BMC bioinformatics 20200713 1
<h4>Background</h4>Understanding the relation between the human microbiome and modulating factors, such as diet, may help researchers design intervention strategies that promote and maintain healthy microbial communities. Numerous analytical tools are available to help identify these relations, oftentimes via automated variable selection methods. However, available tools frequently ignore evolutionary relations among microbial taxa, potential relations between modulating factors, as well as mode ...[more]