Unknown

Dataset Information

0

Quantum teleportation mediated by surface plasmon polariton.


ABSTRACT: Surface plasmon polaritons (SPPs) are collective excitations of free electrons propagating along a metal-dielectric interface. Although some basic quantum properties of SPPs, such as the preservation of entanglement, the wave-particle duality of a single plasmon, the quantum interference of two plasmons, and the verification of entanglement generation, have been shown, more advanced quantum information protocols have yet to be demonstrated with SPPs. Here, we experimentally realize quantum state teleportation between single photons and SPPs. To achieve this, we use polarization-entangled photon pairs, coherent photon-plasmon-photon conversion on a metallic subwavelength hole array, complete Bell-state measurements and an active feed-forward technique. The results of both quantum state and quantum process tomography confirm the quantum nature of the SPP mediated teleportation. An average state fidelity of [Formula: see text] and a process fidelity of [Formula: see text], which are well above the classical limit, are achieved. Our work shows that SPPs may be useful for realizing complex quantum protocols in a photonic-plasmonic hybrid quantum network.

SUBMITTER: Jiang XH 

PROVIDER: S-EPMC7359310 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantum teleportation mediated by surface plasmon polariton.

Jiang Xin-He XH   Chen Peng P   Qian Kai-Yi KY   Chen Zhao-Zhong ZZ   Xu Shu-Qi SQ   Xie Yu-Bo YB   Zhu Shi-Ning SN   Ma Xiao-Song XS  

Scientific reports 20200713 1


Surface plasmon polaritons (SPPs) are collective excitations of free electrons propagating along a metal-dielectric interface. Although some basic quantum properties of SPPs, such as the preservation of entanglement, the wave-particle duality of a single plasmon, the quantum interference of two plasmons, and the verification of entanglement generation, have been shown, more advanced quantum information protocols have yet to be demonstrated with SPPs. Here, we experimentally realize quantum state  ...[more]

Similar Datasets

| S-EPMC3669946 | biostudies-literature
| S-EPMC4014988 | biostudies-other
| S-EPMC7423978 | biostudies-literature
| S-EPMC5630234 | biostudies-literature
| S-EPMC3900930 | biostudies-literature
| S-EPMC4462146 | biostudies-other
| S-EPMC4677406 | biostudies-literature
| S-EPMC6386922 | biostudies-literature
| S-EPMC4118183 | biostudies-literature
| S-EPMC6195333 | biostudies-literature