Unknown

Dataset Information

0

Non-affinity in multi-material mechanical metamaterials.


ABSTRACT: Non-affine deformations enable mechanical metamaterials to achieve their unusual properties while imposing implications for their structural integrity. The presence of multiple phases with different mechanical properties results in additional non-affinity of the deformations, a phenomenon that has never been studied before in the area of extremal mechanical metamaterials. Here, we studied the degree of non-affinity, [Formula: see text], resulting from the random substitution of a fraction of the struts,[Formula: see text], that make up a lattice structure and are printed using a soft material (elastic modulus?=?[Formula: see text]) by those printed using a hard material ([Formula: see text]). Depending on the unit cell angle (i.e., [Formula: see text] = 60°, 90°, or 120°), the lattice structures exhibited negative, near-zero, or positive values of the Poisson's ratio, respectively. We found that the auxetic structures exhibit the highest levels of non-affinity, followed by the structures with positive and near-zero values of the Poisson's ratio. We also observed an increase in [Formula: see text] with [Formula: see text] and [Formula: see text] until [Formula: see text] =104 and [Formula: see text]= 75%-90% after which [Formula: see text] saturated. The dependency of [Formula: see text] upon [Formula: see text] was therefore found to be highly asymmetric. The positive and negative values of the Poisson's ratio were strongly correlated with [Formula: see text]. Interestingly, achieving extremely high or extremely low values of the Poisson's ratio required highly affine deformations. In conclusion, our results clearly show the importance of considering non-affinity when trying to achieve a specific set of mechanical properties and underscore the structural integrity implications in multi-material mechanical metamaterials.

SUBMITTER: Mirzaali MJ 

PROVIDER: S-EPMC7359350 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Non-affinity in multi-material mechanical metamaterials.

Mirzaali M J MJ   Pahlavani H H   Yarali E E   Zadpoor A A AA  

Scientific reports 20200713 1


Non-affine deformations enable mechanical metamaterials to achieve their unusual properties while imposing implications for their structural integrity. The presence of multiple phases with different mechanical properties results in additional non-affinity of the deformations, a phenomenon that has never been studied before in the area of extremal mechanical metamaterials. Here, we studied the degree of non-affinity, [Formula: see text], resulting from the random substitution of a fraction of the  ...[more]

Similar Datasets

| S-EPMC10409733 | biostudies-literature
| S-EPMC6002359 | biostudies-literature
| S-EPMC6286172 | biostudies-literature
| S-EPMC4124469 | biostudies-literature
| S-EPMC4323639 | biostudies-literature
| S-EPMC8126663 | biostudies-literature
| S-EPMC5264209 | biostudies-literature
| S-EPMC7673809 | biostudies-literature
| S-EPMC5772660 | biostudies-literature
| S-EPMC7299623 | biostudies-literature