Unknown

Dataset Information

0

Design of a multi-epitope vaccine against SARS-CoV-2 using immunoinformatics approach.


ABSTRACT: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused COVID-19 disease in China. So far, no vaccine has licensed to protect against infection with COVID-19, therefore an effective COVID-19 vaccine needed. The aim of this study was to predict antigenic peptides of SARS-CoV-2 for designing the COVID-19 vaccine using immunoinformatic analysis. In this study, T and B-cell epitopes of S protein were predicted and screened based on the antigenicity, toxicity, allergenicity, and cross-reactivity with human proteomes. The epitopes were joined by the appropriate linker. LT-IIc as an adjuvant was attached to the end of the structure. The secondary and 3D structure of the vaccine was predicted. The refinement process was performed to improve the quality of the 3D model structure; the validation process is performed using the Ramachandran plot and ProSA z-score. The proposed vaccine's binding affinity to the HLA-A11:01 and HLA-DRB1_01:01 molecule was evaluated by molecular docking. Using molecular dynamics, the stability of vaccine-HLA complexes was also evaluated. Finally, in silico gene cloning was performed in the pET30a (+) vector. The findings suggest that the current vaccine may be a promising vaccine to prevent SARS-CoV-2 infection.

SUBMITTER: Sanami S 

PROVIDER: S-EPMC7362859 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Design of a multi-epitope vaccine against SARS-CoV-2 using immunoinformatics approach.

Sanami Samira S   Zandi Milad M   Pourhossein Behzad B   Mobini Gholam-Reza GR   Safaei Mohsen M   Abed Atena A   Arvejeh Pooria Mohammadi PM   Chermahini Fatemeh Amini FA   Alizadeh Morteza M  

International journal of biological macromolecules 20200715


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused COVID-19 disease in China. So far, no vaccine has licensed to protect against infection with COVID-19, therefore an effective COVID-19 vaccine needed. The aim of this study was to predict antigenic peptides of SARS-CoV-2 for designing the COVID-19 vaccine using immunoinformatic analysis. In this study, T and B-cell epitopes of S protein were predicted and screened based on the antigenicity, toxicity, allergenicity, and cross-rea  ...[more]

Similar Datasets

| S-EPMC9376164 | biostudies-literature
| S-EPMC7441805 | biostudies-literature
| S-EPMC7653218 | biostudies-literature
| S-EPMC8813187 | biostudies-literature
| S-EPMC8057924 | biostudies-literature
| S-EPMC9967539 | biostudies-literature
| S-EPMC8397861 | biostudies-literature
| S-EPMC9487853 | biostudies-literature
| S-EPMC8055380 | biostudies-literature
| S-EPMC8230658 | biostudies-literature