Unknown

Dataset Information

0

Compressed-sensing accelerated 4D flow MRI of cerebrospinal fluid dynamics.


ABSTRACT:

Background

4D flow magnetic resonance imaging (MRI) of CSF can make an important contribution to the understanding of hydrodynamic changes in various neurological diseases but remains limited in clinical application due to long acquisition times. The aim of this study was to evaluate the accuracy of compressed SENSE accelerated MRI measurements of the spinal CSF flow.

Methods

In 20 healthy subjects 4D flow MRI of the CSF in the cervical spine was acquired using compressed sensitivity encoding [CSE, a combination of compressed sensing and parallel imaging (SENSE) provided by the manufacturer] with acceleration factors between 4 and 10. A conventional scan using SENSE was used as reference. Extracted parameters were peak velocity, absolute net flow, forward flow and backward flow. Bland-Altman analysis was performed to determine the scan-rescan reproducibility and the agreement between SENSE and compressed SENSE. Additionally, a time accumulated flow error was calculated. In one additional subject flow of the spinal canal at the level of the entire spinal cord was assessed.

Results

Averaged acquisition times were 10:21 min (SENSE), 9:31 min (CSE4), 6:25 min (CSE6), 4:53 min (CSE8) and 3:51 min (CSE10). Acquisition of the CSF flow surrounding the entire spinal cord took 14:40 min. Bland-Altman analysis showed good agreement for peak velocity, but slight overestimations for absolute net flow, forward flow and backward flow (ConclusionA quantitative analysis of acceleration factors CSE4-10 showed that CSE with an acceleration factor up to 6 is feasible. This allows a scan time reduction of 40% and enables the acquisition and analysis of the CSF flow dynamics surrounding the entire spinal cord within a clinically acceptable scan time.

SUBMITTER: Jaeger E 

PROVIDER: S-EPMC7364783 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Compressed-sensing accelerated 4D flow MRI of cerebrospinal fluid dynamics.

Jaeger Elena E   Sonnabend Kristina K   Schaarschmidt Frank F   Maintz David D   Weiss Kilian K   Bunck Alexander C AC  

Fluids and barriers of the CNS 20200716 1


<h4>Background</h4>4D flow magnetic resonance imaging (MRI) of CSF can make an important contribution to the understanding of hydrodynamic changes in various neurological diseases but remains limited in clinical application due to long acquisition times. The aim of this study was to evaluate the accuracy of compressed SENSE accelerated MRI measurements of the spinal CSF flow.<h4>Methods</h4>In 20 healthy subjects 4D flow MRI of the CSF in the cervical spine was acquired using compressed sensitiv  ...[more]

Similar Datasets

| S-EPMC7846046 | biostudies-literature
| S-EPMC6802342 | biostudies-literature
| S-EPMC7079056 | biostudies-literature
| S-EPMC5464980 | biostudies-literature
| S-EPMC6618296 | biostudies-literature
| S-EPMC8634777 | biostudies-literature
| S-EPMC6971939 | biostudies-literature
| S-EPMC4372461 | biostudies-literature
| S-EPMC5050060 | biostudies-literature
| S-EPMC6165908 | biostudies-literature