Unknown

Dataset Information

0

Determination of interatomic coupling between two-dimensional crystals using angle-resolved photoemission spectroscopy.


ABSTRACT: Lack of directional bonding between two-dimensional crystals like graphene or monolayer transition metal dichalcogenides provides unusual freedom in the selection of components for vertical van der Waals heterostructures. However, even for identical layers, their stacking, in particular the relative angle between their crystallographic directions, modifies properties of the structure. We demonstrate that the interatomic coupling between two two-dimensional crystals can be determined from angle-resolved photoemission spectra of a trilayer structure with one aligned and one twisted interface. Each of the interfaces provides complementary information and together they enable self-consistent determination of the coupling. We parametrise interatomic coupling for carbon atoms by studying twisted trilayer graphene and show that the result can be applied to structures with different twists and number of layers. Our approach demonstrates how to extract fundamental information about interlayer coupling in a stack of two-dimensional crystals and can be applied to many other van der Waals interfaces.

SUBMITTER: Thompson JJP 

PROVIDER: S-EPMC7367817 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Determination of interatomic coupling between two-dimensional crystals using angle-resolved photoemission spectroscopy.

Thompson J J P JJP   Pei D D   Peng H H   Wang H H   Channa N N   Peng H L HL   Barinov A A   Schröter N B M NBM   Chen Y Y   Mucha-Kruczyński M M  

Nature communications 20200717 1


Lack of directional bonding between two-dimensional crystals like graphene or monolayer transition metal dichalcogenides provides unusual freedom in the selection of components for vertical van der Waals heterostructures. However, even for identical layers, their stacking, in particular the relative angle between their crystallographic directions, modifies properties of the structure. We demonstrate that the interatomic coupling between two two-dimensional crystals can be determined from angle-r  ...[more]

Similar Datasets

| S-EPMC6141890 | biostudies-other
| S-EPMC7682325 | biostudies-literature
| S-EPMC5506037 | biostudies-literature
| S-EPMC5244369 | biostudies-literature
| S-EPMC7048418 | biostudies-literature
| S-EPMC4126005 | biostudies-literature
| S-EPMC5090988 | biostudies-literature
| S-EPMC3408918 | biostudies-other
| S-EPMC9243021 | biostudies-literature
| S-EPMC5303875 | biostudies-literature