Cadmium chloride (CdCl2) elicitation improves reserpine and ajmalicine yield in Rauvolfia serpentina as revealed by high-performance thin-layer chromatography (HPTLC).
Ontology highlight
ABSTRACT: In vitro cultures play a promising role for production of pharmaceutically important plant secondary metabolites and the use of elicitation can mitigate the low productivity of active compounds. In the present study, the influence of cadmium chloride (CdCl2) elicitation on alkaloid yield was investigated in Rauvolfia serpentina. This heavy metal was employed to enhance the yield of reserpine and ajmalicine in leaf derived callus, leaves, stems and roots of in vitro grown cultures. Different concentrations [0.05 mM (C1), 0.10 mM (C2), 0.15 mM (C3) and 0.20 mM (C4)] of CdCl2 were added to the MS medium. The elicitor's influence on callus biomass, biochemical attributes and the yield of alkaloids was monitored at regular intervals. The amendment of CdCl2 improved growth and maximum callus biomass (1.29 g fresh weight and 0.16 g dry weight) was noted at 0.15 mM (C3) after 6 days of elicitation. The addition of elicitor in medium caused cellular stress and to analyse the role of CdCl2 in plant defence responses various antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were measured in treated and non-treated cultures. The antioxidant enzyme activity increased linearly with elevated levels of CdCl2 in medium; highest APX (0.88 EU min-1 mg-1protein), SOD (5.40 EU min-1 mg-1protein) and CAT (4.21 EU min-1 mg-1protein) activity were observed in leaves of in vitro regenerated plants at C4. The quantitative analyses of reserpine and ajmalicine were conducted in different elicitated tissues using high-performance thin-layer chromatography (HPTLC) method. The study reveals enriched level of reserpine and ajmalicine in cultivated tissues and the enhancement was noted up to C3 (0.15 mM) elicitor level. Reserpine yield was maximum (0.191 mg g-1 DW) in roots of in vitro regenerated plants. The accumulation of ajmalicine was, however, better in leaf derived callus at C3 (0.131 mg g-1 DW). Higher elicitor dose (0.20 mM) inhibited callus biomass growth and subsequent alkaloid accumulation. The present study indicates the use of CdCl2 as a propitious method in enhancing reserpine and ajmalicine yield in R. serpentina.
SUBMITTER: Zafar N
PROVIDER: S-EPMC7371775 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA