Unknown

Dataset Information

0

A heterodimeric SNX4--SNX7 SNX-BAR autophagy complex coordinates ATG9A trafficking for efficient autophagosome assembly.


ABSTRACT: The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a subgroup of SNXs in selective and non-selective forms of autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that the SNX-BAR protein SNX4 is needed for efficient LC3 (also known as MAP1LC3) lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and hetero-dimers, and we show that SNX4 forms functional heterodimers with either SNX7 or SNX30 that associate with tubulovesicular endocytic membranes. Detailed image-based analysis during the early stages of autophagosome assembly reveals that SNX4-SNX7 is an autophagy-specific SNX-BAR heterodimer, required for efficient recruitment and/or retention of core autophagy regulators at the nascent isolation membrane. SNX4 partially colocalises with juxtanuclear ATG9A-positive membranes, with our data linking the autophagy defect upon SNX4 disruption to the mis-trafficking and/or retention of ATG9A in the Golgi region. Taken together, our findings show that the SNX4-SNX7 heterodimer coordinates ATG9A trafficking within the endocytic network to establish productive autophagosome assembly sites, thus extending knowledge of SNXs as positive regulators of autophagy.

SUBMITTER: Anton Z 

PROVIDER: S-EPMC7375690 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

A heterodimeric SNX4--SNX7 SNX-BAR autophagy complex coordinates ATG9A trafficking for efficient autophagosome assembly.

Antón Zuriñe Z   Betin Virginie M S VMS   Simonetti Boris B   Traer Colin J CJ   Attar Naomi N   Cullen Peter J PJ   Lane Jon D JD  

Journal of cell science 20200715 14


The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a subgroup of SNXs in selective and non-selective forms of autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that the SNX-BAR protein SNX4 is needed for efficient LC3 (also known as MAP1LC3) lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and hetero-dimers, an  ...[more]

Similar Datasets

| S-EPMC4854555 | biostudies-literature
| S-EPMC7888711 | biostudies-literature
| S-EPMC5262529 | biostudies-literature
| S-EPMC7082075 | biostudies-literature
| S-EPMC7083883 | biostudies-literature
| S-EPMC9841331 | biostudies-literature
| S-EPMC3603510 | biostudies-literature
| S-EPMC7718406 | biostudies-literature
| S-SCDT-10_15252-EMBJ_2022112287 | biostudies-other
| S-EPMC3512392 | biostudies-literature