Unknown

Dataset Information

0

NHR-49 Transcription Factor Regulates Immunometabolic Response and Survival of Caenorhabditis elegans during Enterococcus faecalis Infection.


ABSTRACT: Immune response to pathogens is energetically expensive to the host; however, the cellular source of energy to fuel immune response remains unknown. In this study, we show that Caenorhabditis elegans exposed to pathogenic Gram-positive and Gram-negative bacteria or yeast rapidly utilizes lipid droplets, the major energy reserve. The nematode's response to the pathogenic bacterium Enterococcus faecalis entails metabolic rewiring for the upregulation of several genes involved in lipid utilization and downregulation of lipid synthesis genes. Genes encoding acyl-CoA synthetase ACS-2, involved in lipid metabolism, and flavin monooxygenase FMO-2, involved in detoxification, are two highly upregulated genes during E. faecalis infection. We find that both ACS-2 and FMO-2 are necessary for survival and rely on NHR-49, a peroxisome proliferator-activated receptor alpha (PPAR?) ortholog, for upregulation during E. faecalis infection. Thus, NHR-49 regulates an immunometabolic axis of survival in C. elegans by modulating breakdown of lipids as well as immune effector production upon E. faecalis exposure.

SUBMITTER: Dasgupta M 

PROVIDER: S-EPMC7375755 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

NHR-49 Transcription Factor Regulates Immunometabolic Response and Survival of Caenorhabditis elegans during Enterococcus faecalis Infection.

Dasgupta Madhumanti M   Shashikanth Meghana M   Gupta Anjali A   Sandhu Anjali A   De Atreyee A   Javed Salil S   Singh Varsha V  

Infection and immunity 20200721 8


Immune response to pathogens is energetically expensive to the host; however, the cellular source of energy to fuel immune response remains unknown. In this study, we show that <i>Caenorhabditis elegans</i> exposed to pathogenic Gram-positive and Gram-negative bacteria or yeast rapidly utilizes lipid droplets, the major energy reserve. The nematode's response to the pathogenic bacterium <i>Enterococcus faecalis</i> entails metabolic rewiring for the upregulation of several genes involved in lipi  ...[more]

Similar Datasets

| S-EPMC1201344 | biostudies-literature
| S-EPMC5019492 | biostudies-literature
| S-EPMC7473354 | biostudies-literature
| S-EPMC5595674 | biostudies-literature
2022-03-16 | GSE166788 | GEO
| S-EPMC6155532 | biostudies-literature
| S-EPMC8959602 | biostudies-literature
| S-EPMC8291716 | biostudies-literature
| S-EPMC9438139 | biostudies-literature
2012-03-15 | GSE34856 | GEO