Investigating mass balance of Parvati glacier in Himalaya using satellite imagery based model.
Ontology highlight
ABSTRACT: Accurate assessment of glacier mass loss is essential for understanding the glacier sensitivity to climate change and the ramifications of glacier retreat or surge. The glacier melt affects the runoff and water availability, on which the drinking and irrigation water supplies and generation of hydroelectric energy depend upon. The excessive glacial retreat may cause flood, glacial lake outburst flood, avalanches and sea level rise which are likely to affect the lives and livelihood of the people and damage the infrastructure. Here, we present a remote sensing based modeling framework to improve the understanding of accumulation and ablation processes and to quantify the glacier mass balance using multispectral satellite imageries, as several glacierized regions of the world are still poorly monitored because the field measurements for continuous monitoring on a large scale or in a complex harsh terrain are costly, time consuming and difficult. The developed modeling framework has been applied to the Parvati glacier in the western Himalaya to investigate glaciological processes and estimate the surface mass loss using 19 years of satellite images from 1998 to 2016. It spreads over 425.318 km2 and more than 50% of the area is accumulation area. The study shows that the Parvati glacier is not in equilibrium and its behavioural response changes year to year characterized with high rate of mass loss. The value of accumulation area ratio varies between 0.33 and 0.70 with an average value of 0.55, indicating a negative mass loss. The mean specific mass loss is -?0.49?±?0.11 m w.e. and the total mass loss is 3.95 Gt., indicating strong influence of climate change and effect on river flows and water availability.
SUBMITTER: Tak S
PROVIDER: S-EPMC7376227 | biostudies-literature | 2020 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA