Unknown

Dataset Information

0

Dynamic Complex Emulsions as Amplifiers for On-Chip Photonic Cavity-Enhanced Resonators.


ABSTRACT: Despite the recent emergence of microcavity resonators as label-free biological and chemical sensors, practical applications still require simple and robust methods to impart chemical selectivity and reduce the cost of fabrication. We introduce the use of hydrocarbon-in-fluorocarbon-in-water (HC/FC/W) double emulsions as a liquid top cladding that expands the versatility of optical resonators as chemical sensors. The all-liquid complex emulsions are tunable droplets that undergo dynamic and reversible morphological transformations in response to a change in the chemical environment (e.g., exposure to targeted analytes). This chemical-morphological coupling drastically modifies the effective refractive index, allowing the complex emulsions to act as a chemical transducer and signal amplifier. We detect this large change in the refractive index by tracking the shift of the enveloped resonant spectrum of a silicon nitride (Si3N4) racetrack resonator-based sensor, which correlates well with a change in the morphology of the complex droplets. This combination of soft materials (dynamic complex emulsions) and hard materials (on-chip resonators) provides a unique platform for liquid-phase, real-time, and continuous detection of chemicals and biomolecules for miniaturized and remote, environmental, medical, and wearable sensing applications.

SUBMITTER: Savagatrup S 

PROVIDER: S-EPMC7384970 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamic Complex Emulsions as Amplifiers for On-Chip Photonic Cavity-Enhanced Resonators.

Savagatrup Suchol S   Ma Danhao D   Zhong Huikai H   Harvey Kent S KS   Kimerling Lionel C LC   Agarwal Anuradha M AM   Swager Timothy M TM  

ACS sensors 20200522 7


Despite the recent emergence of microcavity resonators as label-free biological and chemical sensors, practical applications still require simple and robust methods to impart chemical selectivity and reduce the cost of fabrication. We introduce the use of hydrocarbon-in-fluorocarbon-in-water (HC/FC/W) double emulsions as a liquid top cladding that expands the versatility of optical resonators as chemical sensors. The all-liquid complex emulsions are tunable droplets that undergo dynamic and reve  ...[more]

Similar Datasets

| S-EPMC5286200 | biostudies-literature
| S-EPMC4913889 | biostudies-literature
| S-EPMC10885778 | biostudies-literature
| S-EPMC5241816 | biostudies-other
| S-EPMC3116709 | biostudies-literature
| S-EPMC2783283 | biostudies-literature
| S-EPMC8622141 | biostudies-literature
| S-EPMC5617375 | biostudies-literature
| S-EPMC5469753 | biostudies-literature
| S-EPMC3689753 | biostudies-other