Project description:The COVID-19 pandemic has led to the production of novel devices intended to protect airway managers during the aerosol-generating procedure of tracheal intubation. Using an in-situ simulation model, we evaluated laryngoscopist exposure of airborne particles sized 0.3 - 5.0 microns using five aerosol containment devices (aerosol box; sealed box with and without suction; vertical drape; and horizontal drape) compared with no aerosol containment device. Nebulised saline was used as the aerosol-generating model for 300 s, at which point, the devices were removed to assess particle spread. Primary outcome was the quantity and size of airborne particles measured at the level of the laryngoscopist's head at 30, 60, 120 and 300 s, as well as 360 s (60 s after device removal). Airborne particles sizes of 0.3, 0.5, 1.0, 2.5 and 5.0 microns were quantified using an electronic airborne particle counter. Compared with no device use, the sealed intubation box with suction resulted in a decrease in 0.3, 0.5, 1.0 and 2.5 micron, but not 5.0 micron, particle exposure over all time-periods (p = 0.003 for all time periods). Compared with no device use, the aerosol box showed an increase in 1.0, 2.5 and 5.0 micron airborne particle exposure at 300 s (p = 0.002, 0.008, 0.002, respectively). Compared with no device use, neither horizontal nor vertical drapes showed any difference in any particle size exposure at any time. Finally, when the patient coughed, use of the aerosol box resulted in a marked increase in airborne particle exposure compared with other devices or no device use. In conclusion, novel devices intended to protect the laryngoscopist require objective testing to ensure they are fit for purpose and do not result in increased airborne particle exposure.
Project description:Oxygen supplementation is crucial for awake tracheal intubation (ATI) using a flexible bronchoscope in patients with an anticipated difficult airway. However, the modality of optimal oxygen delivery remains unclear. This retrospective study compared high-flow nasal oxygen (HFNO) and conventional low-flow oxygen supply during ATI. We applied inverse probability of treatment weighting (IPTW) to account for biases due to clinical characteristic differences between the groups. The primary endpoint was the lowest oxygen saturation during ATI. The secondary endpoints were incidence of desaturation, multiple attempts, failure rate, and procedural duration. After IPTW adjustment, the lowest oxygen saturation in the HFNO group during ATI was significantly higher than that in the conventional oxygenation group (99.3 ± 0.2 vs. 97.5 ± 0.5, P < 0.001). Moreover, the HFNO group had fewer cases with multiple attempts than the conventional oxygenation group (3% vs. 16%, P = 0.007). There were no significant differences between the two groups in the incidence of desaturation, failure and procedural duration. Our findings suggest that HFNO was associated with improved lowest oxygen saturation and a lower rate of multiple attempts during ATI. Therefore, we recommend using HFNO for safer oxygen delivery and improved quality of procedure during ATI.
Project description:BackgroundDetermine if apneic oxygenation (AO) delivered via nasal cannula during the apneic phase of tracheal intubation (TI), reduces adverse TI-associated events (TIAEs) in children.MethodsAO was implemented across 14 pediatric intensive care units as a quality improvement intervention during 2016-2020. Implementation consisted of an intubation safety checklist, leadership endorsement, local champion, and data feedback to frontline clinicians. Standardized oxygen flow via nasal cannula for AO was as follows: 5 L/min for infants (< 1 year), 10 L/min for young children (1-7 years), and 15 L/min for older children (≥ 8 years). Outcomes were the occurrence of adverse TIAEs (primary) and hypoxemia (SpO2 < 80%, secondary).ResultsOf 6549 TIs during the study period, 2554 (39.0%) occurred during the pre-implementation phase and 3995 (61.0%) during post-implementation phase. AO utilization increased from 23 to 68%, p < 0.001. AO was utilized less often when intubating infants, those with a primary cardiac diagnosis or difficult airway features, and patient intubated due to respiratory or neurological failure or shock. Conversely, AO was used more often in TIs done for procedures and those assisted by video laryngoscopy. AO utilization was associated with a lower incidence of adverse TIAEs (AO 10.5% vs. without AO 13.5%, p < 0.001), aOR 0.75 (95% CI 0.58-0.98, p = 0.03) after adjusting for site clustering (primary analysis). However, after further adjusting for patient and provider characteristics (secondary analysis), AO utilization was not independently associated with the occurrence of adverse TIAEs: aOR 0.90, 95% CI 0.72-1.12, p = 0.33 and the occurrence of hypoxemia was not different: AO 14.2% versus without AO 15.2%, p = 0.43.ConclusionWhile AO use was associated with a lower occurrence of adverse TIAEs in children who required TI in the pediatric ICU after accounting for site-level clustering, this result may be explained by differences in patient, provider, and practice factors. Trial Registration Trial not registered.
Project description:BACKGROUND:Sore throat is common after tracheal intubation. Water can be used to lubricate tracheal tubes, but its benefit has not been validated. We thus did a randomised non-inferiority trial to test the hypothesis that a tube lubricated with water does not reduce sore throat after tracheal intubation. METHODS:We randomized female or male patients (n = 296) undergoing surgery in the ears or eyes to receive either a tube lubricated with water or a tube without lubrication for intubation. We assessed sore throat at 0, 2, 4, and 24 h after surgery; pharyngeal injury at 2 and 24 h after surgery; and respiratory infections within 7 days after surgery. For the incidence of sore throat within 24 h after surgery (primary outcome), the two-sided 90% confidence interval of the risk difference was compared with the prespecified non-inferiority margin of 15%. Other outcomes were analyzed with two-sided superiority tests. RESULTS:The incidence of sore throat within 24 h after surgery was 80/147 (54.4%) in the non-lubricated tube group and 83/149 (55.7%) in the water-lubricated tube group (risk difference -1.3%, 90% confidence interval -10.9% to 8.3%). Because the confidence interval was below the non-inferiority margin, the incidence of sore throat was not higher in the non-lubricated tube group than in the water-lubricated tube group. There was no significant association between groups in the sore throat, pharyngeal injury, and respiratory infection at each assessment time. CONCLUSIONS:The tube lubricated with water did not reduce sore throat and pharyngeal injury after tracheal intubation compared to the tube without lubrication.
Project description:BackgroundTracheal rupture is a rare but life-threatening complication that most commonly occurrs after blunt trauma to the chest, but which may also complicate tracheal intubation. We report a case of post-intubation tracheal rupture after cataract surgery under general anesthesia treated conservatively.Case presentationFour hours after extubation, a 67 year-old woman developed subcutaneous emphysema of the facial, bilateral laterocervical and upper anterior chest. Tracheobronchial fiberendoscopy showed a posterior tracheal transmural rupture 4 cm long located 2.5 cm above the carina that opened in inspiration. The location of the lesion and features of the patient favoured conservative treatment with antibiotic cover. The patient made a full and uncomplicated recovery and was discharged fourteen days after the original injury.ConclusionTwo therapeutic strategies are currently employed for post-intubation tracheal rupture: a non-surgical strategy for small injuries and a surgical strategy for larger injuries. This case report presented the non-surgical therapeutic strategy of a large tracheal injury.