Project description:Vitamin D deficiency (VDD), 25-OHD levels <20 ng/ml, is prevalent among patients with sickle cell disease (SCD) and is linked to acute and chronic pain and bone fracture in this population. There is limited literature regarding VDD-associated risk factors for SCD. We examined potential clinical and genomic parameters associated with VDD in 335 adults with SCD in a cross-sectional study. VDD was present in 65% of adult SCD patients, and 25-OHD levels independently and positively correlated with older age (P < 0·001) and vitamin D supplementation (P < 0·001). 25-OHD levels were higher in SCD patients over 40 years of age compared to the general African-American population. Both lower 25-OHD levels and increased pain frequency were associated with increased expression of SLC6A5 encoding glycine transporter-2 (GlyT2), a protein involved in neuronal pain pathways. Lower 25-OHD levels were also associated with increased expression of CYP3A4, and with decreased expression of GC (also termed DBP) and VDR, three genes involved in vitamin D metabolism. We conclude that vitamin D supplementation should be an almost universal feature of the care of young adults with SCD, and that further research is warranted into genomic factors that regulate vitamin D metabolism in SCD.
Project description:Vitamin D deficiency has emerged as a public health focus in recent years and patients with sickle cell disease (SCD) reportedly have a high prevalence of the condition. Our objectives were to summarize definitions of vitamin D deficiency and insufficiency used in the literature, and to determine the prevalence and magnitude of each in patients with SCD through a systematic review conducted according to PRISMA guidelines. From a PubMed search, 34 potential articles were identified and 15 met eligibility criteria for inclusion. Definitions of deficiency and insufficiency varied greatly across studies making direct comparisons difficult. This review provides evidence to suggest that suboptimal vitamin D levels are highly prevalent among those with SCD, far more so than in comparable non-SCD patients or matched control populations. Defining deficiency as vitamin D < 20 ng/mL, prevalence estimates in SCD populations range from 56.4% to 96.4%. When compared with results from the population-based National Health and Nutrition Examination Survey, however, the general African American population appeared to have a similarly high prevalence of vitamin D deficiency. African American patients with and without SCD were both substantially higher than that of Caucasians. What remains to be determined is whether there are adverse health effects for patients with SCD because of concurrent vitamin D deficiency.
Project description:Nitrous oxide (N2O) is widely used as an anesthetic or an analgesic. N2O prolonged and recurrent administration is known to affect vitamin B12 metabolism with subsequent clinical consequences. We report herein the case of a 13-year-old girl with sickle cell disease exhibiting severe neurological and biochemical signs of functional vitamin B12 deficiency due to prolonged and repeated exposure to N2O. This was an incentive to prospectively investigate functional vitamin B12 deficiency in patients affected by sickle cell disease regularly exposed to N2O. We measured plasma concentrations of vitamin B12, total homocysteine, methionine and methylmalonic acid in 39 patients with sickle cell disease between 2015 and 2016. No patients developed neurological symptoms related to N2O administration but 19 patients (49%) had biochemical abnormalities suggesting mildly disturbed vitamin B12 metabolism e.g. decreased B12 vitamin, hypomethioninemia, or slightly increased methylmalonic acid or homocysteine. The clinical case highlight the potential severe deleterious effects of N2O over exposure on B12 vitamin metabolism in particular in patients affected with sickle cell disease. Conversely, when used without excess even repeatedly, there seem to be no overt clinically relevant abnormalities in vitamin B12 metabolism as observed on the cohort of 39 sickle cell disease affected patients.
Project description:Humans and mice with sickle cell disease (SCD) have rigid red blood cells (RBCs). Omega-3 fatty acids, such as docosahexanoic acid (DHA), may influence RBC deformability via incorporation into the RBC membrane. In this study, sickle cell (SS) mice were fed natural ingredient rodent diets supplemented with 3% DHA (DHA diet) or a control diet matched in total fat (CTRL diet). After 8weeks of feeding, we examined the RBCs for: 1) stiffness, as measured by atomic force microscopy; 2) deformability, as measured by ektacytometry; and 3) percent irreversibly sickled RBCs on peripheral blood smears. Using atomic force microscopy, it is found that stiffness is increased and deformability decreased in RBCs from SS mice fed CTRL diet compared to wild-type mice. In contrast, RBCs from SS mice fed DHA diet had markedly decreased stiffness and increased deformability compared to RBCs from SS mice fed CTRL diet. Furthermore, examination of peripheral blood smears revealed less irreversibly sickled RBCs in SS mice fed DHA diet as compared to CTRL diet. In summary, our findings indicate that DHA supplementation improves RBC flexibility and reduces irreversibly sickled cells by 40% in SS mice. These results point to potential therapeutic benefits of dietary omega-3 fatty acids in SCD.
Project description:Kidney disease, including proximal tubule (PT) dysfunction, and vitamin D deficiency are among the most prevalent complications in sickle cell disease (SCD) patients. Although these two comorbidities have never been linked in SCD, the PT is the primary site for activation of vitamin D. Precursor 25-hydroxyvitamin D [25(OH)D] bound to vitamin D-binding protein (DBP) is taken up by PT cells via megalin/cubilin receptors, hydroxylated to the active 1,25-dihydroxyvitamin D [1,25(OH)2D] form, and released into the bloodstream. We tested the hypothesis that cell-free hemoglobin (Hb) filtered into the PT lumen impairs vitamin D uptake and metabolism. Hb at concentrations expected to be chronically present in the ultrafiltrate of SCD patients competed directly with DBP for apical uptake by PT cells. By contrast, uptake of retinol binding protein was impaired only at considerably higher Hb concentrations. Prolonged exposure to Hb led to increased oxidative stress in PT cells and to a selective increase in mRNA levels of the CYP27B1 hydroxylase, although protein levels were unchanged. Hb exposure also impaired vitamin D metabolism in PT cells, resulting in reduced ratio of 1,25(OH)2D:25(OH)D. Moreover, plasma levels of 1,25(OH)2D were reduced in a mouse model of SCD. Together, our data suggest that Hb released by chronic hemolysis has multiple effects on PT function that contribute to vitamin D deficiency in SCD patients.
Project description:Sickle cell disease (SCD) is a genetic disorder of hemoglobin, leading to chronic hemolytic anemia and multiple organ damage. Among chronic organ complications, sickle cell bone disease (SBD) has a very high prevalence, resulting in long-term disability, chronic pain and fractures. Here, we evaluated the effects of ω-3 (fish oil-based, FD)-enriched diet vs. ω-6 (soybean oil-based, SD)- supplementation on murine SBD. We exposed SCD mice to recurrent hypoxia/reoxygenation (rec H/R), a consolidated model for SBD. In rec H/R SS mice, FD improves osteoblastogenesis/osteogenic activity by downregulating osteoclast activity via miR205 down-modulation and reduces both systemic and local inflammation. We also evaluated adipogenesis in both AA and SS mice fed with either SD or FD and exposed to rec H/R. FD reduced and reprogramed adipogenesis from white to brown adipocyte tissue (BAT) in bone compartments. This was supported by increased expression of uncoupling protein 1(UCP1), a BAT marker, and up-regulation of miR455, which promotes browning of white adipose tissue. Our findings provide new insights on the mechanism of action of ω-3 fatty acid supplementation on the pathogenesis of SBD and strengthen the rationale for ω-3 fatty acid dietary supplementation in SCD as a complementary therapeutic intervention.
Project description:Early identification of infants with sickle cell disease (SCD) by newborn screening, now universal in all 50 states in the US, has improved survival, mainly by preventing overwhelming sepsis with the early use of prophylactic penicillin. Routine transcranial Doppler screening with the institution of chronic transfusion decreases the risk of stroke from 10% to 1% in paediatric SCD patients. Hydroxyurea decreases the number and frequency of painful crises, acute chest syndromes and number of blood transfusions in children with SCD. Genetic research continues to be driven toward the prevention and ultimate cure of SCD before adulthood. This review focuses on clinical manifestations and therapeutic strategies for paediatric SCD as well as the evolving topic of gene-focused prevention and therapy.
Project description:Sickle cell syndromes, including sickle cell disease (SCD) and sickle cell trait, are associated with multiple kidney abnormalities. Young patients with SCD have elevated effective renal plasma flow and glomerular filtration rates, which decrease to normal ranges in young adulthood and subnormal levels with advancing age. The pathophysiology of SCD-related nephropathy is multifactorial - oxidative stress, hyperfiltration and glomerular hypertension are all contributing factors. Albuminuria, which is an early clinical manifestation of glomerular damage, is common in individuals with SCD. Kidney function declines more rapidly in individuals with SCD than in those with sickle cell trait or in healthy individuals. Multiple genetic modifiers, including APOL1, HMOX1, HBA1 and HBA2 variants are also implicated in the development and progression of SCD-related nephropathy. Chronic kidney disease and rapid decline in estimated glomerular filtration rate are associated with increased mortality in adults with SCD. Renin-angiotensin-aldosterone system inhibitors are the standard of care treatment for albuminuria in SCD, despite a lack of controlled studies demonstrating their long-term efficacy. Multiple studies of novel therapeutic agents are ongoing, and patients with SCD and kidney failure should be evaluated for kidney transplantation. Given the high prevalence and severe consequences of kidney disease, additional studies are needed to elucidate the pathophysiology, natural history and treatment of SCD-related nephropathy.