Project description:ObjectiveThe aim was to characterize the electrophysiological features and plasma biomarkers of critical illness polyneuropathy (CIN) and myopathy (CIM) in coronavirus disease 2019 (COVID-19) patients with intensive care unit acquired weakness (ICUAW).MethodsAn observational ICU cohort study including adult patients admitted to the ICU at Uppsala University Hospital, Uppsala, Sweden, from March 13th to June 8th 2020. We compared the clinical, electrophysiological and plasma biomarker data between COVID-19 patients who developed CIN/CIM and those who did not. Electrophysiological characteristics were also compared between COVID-19 and non-COVID-19 ICU patients.Results111 COVID-19 patients were included, 11 of whom developed CIN/CIM. Patients with CIN/CIM had more severe illness; longer ICU stay, more thromboembolic events and were more frequently treated with invasive ventilation for longer than 2 weeks. In particular CIN was more frequent among COVID-19 patients with ICUAW (50%) compared with a non-COVID-19 cohort (0%, p = 0.008). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAp) levels were higher in the CIN/CIM group compared with those that did not develop CIN/CIM (both p = 0.001) and correlated with nerve amplitudes.ConclusionsCIN/CIM was more prevalent among COVID-19 ICU patients with severe illness.SignificanceCOVID-19 patients who later developed CIN/CIM had significantly higher NfL and GFAp in the early phase of ICU care, suggesting their potential as predictive biomarkers for CIN/CIM.
Project description:BackgroundIntensive care unit acquired weakness (ICUAW), embraces an array of disorders labeled "critical illness polyneuropathy" (CIP), "critical illness myopathy" (CIM) or "critical illness polyneuromyopathy" (CIPNM). Several studies have addressed the various characteristics of ICUAW, but the recovery is still unclear.ObjectiveThe present review investigated the recovery and the long-term functional outcome of subjects with ICUAW, whether the types of ICUAW have different outcomes and whether there is any supporting evidence.MethodsLiterature search was performed from MEDLINE/PubMed, CINAHL, EMBASE, PeDro, Web of Science and Scopus. Inclusion criteria were: i) sample size including five or more subjects; ii) subjects who suffered from ICUAW and/or CIP, CIM and CIP/CIM; iii) ICUAW ascertained by EMG. Follow-ups longer than one year were defined as long-term.ResultsTwenty-nine studies met the inclusion criteria. In total, 788 subjects with ICUAW were enrolled: 159 (20.1%) died and 588 (74.6%) were followed. Of all the included patients, 613 (77.7%) had CIP, 82 (10.4%) CIM and 56 (7.1%) CIP/CIM. Overall, 70.3% of the subjects with ICUAW fully recovered. Seven (24.1%) studies had a follow-up longer than 1 year (range 2-8) with 173 (21.9%) subjects enrolled globally and 108 followed. Of these subjects, 88.8% gained full recovery. Most of the studies did not use proper functional scales and only 4 and 3 studies employed the Barthel scale and the Functional Independence Measure (FIM) scale. Differentiation between the types of ICUAW was performed in 7 studies, but only 3 studies reported that subjects with CIM had a better prognosis and earlier recovery than subjects with CIP/CIM.ConclusionsSubjects with ICUAW could achieve good recovery and could improve at follow-up. However, the quality of the published studies due to short follow-ups and the paucity of defined outcome measures require confirms.
Project description:Objectives: Systemic inflammation is a major risk factor for critical-illness myopathy (CIM) but its pathogenic role in muscle is uncertain. We observed that interleukin 6 (IL-6) and serum amyloid A1 (SAA1) expression was upregulated in muscle of critically ill patients. To test the relevance of these responses we assessed inflammation and acute-phase response at early and late time points in muscle of patients at risk for CIM. Design: Prospective observational clinical study and prospective animal trial. Setting: Two intensive care units (ICU) and research laboratory. Patients/Subjects: 33 patients with Sequential Organ Failure Assessment scores ≥8 on 3 consecutive days within 5 days in ICU were investigated. A subgroup analysis of 12 patients with, and 18 patients without CIM (non-CIM) was performed. Two consecutive biopsies from vastus lateralis were obtained at median days 5 and 15, early and late time points. Controls were 5 healthy subjects undergoing elective orthopedic surgery. A septic mouse model and cultured myoblasts were used for mechanistic analyses. Measurements and Main Results: Early SAA1 expression was significantly higher in skeletal muscle of CIM compared to non-CIM patients. Immunohistochemistry showed SAA1 accumulations in CIM patients at the early time point, which resolved later. SAA1 expression was induced by IL-6 and tumor necrosis factor-alpha in human and mouse myocytes in vitro. Inflammation-induced muscular SAA1 accumulation could be reproduced in a sepsis mouse model. Conclusions: Skeletal muscle contributes to general inflammation and acute-phase response in CIM patients. Muscular SAA1 could be important for CIM pathogenesis. Trial registration: ISRCTN77569430. Expression analysis of patients with and without CIM (non-CIM) was performed. Date were quantile normalized using Partek Genomic Suite 6.5, RMA background correction, pre background adjustment for GC content and data were limited to the full dataset
Project description:Objectives: Systemic inflammation is a major risk factor for critical-illness myopathy (CIM) but its pathogenic role in muscle is uncertain. We observed that interleukin 6 (IL-6) and serum amyloid A1 (SAA1) expression was upregulated in muscle of critically ill patients. To test the relevance of these responses we assessed inflammation and acute-phase response at early and late time points in muscle of patients at risk for CIM. Design: Prospective observational clinical study and prospective animal trial. Setting: Two intensive care units (ICU) and research laboratory. Patients/Subjects: 33 patients with Sequential Organ Failure Assessment scores ≥8 on 3 consecutive days within 5 days in ICU were investigated. A subgroup analysis of 12 patients with, and 18 patients without CIM (non-CIM) was performed. Two consecutive biopsies from vastus lateralis were obtained at median days 5 and 15, early and late time points. Controls were 5 healthy subjects undergoing elective orthopedic surgery. A septic mouse model and cultured myoblasts were used for mechanistic analyses. Measurements and Main Results: Early SAA1 expression was significantly higher in skeletal muscle of CIM compared to non-CIM patients. Immunohistochemistry showed SAA1 accumulations in CIM patients at the early time point, which resolved later. SAA1 expression was induced by IL-6 and tumor necrosis factor-alpha in human and mouse myocytes in vitro. Inflammation-induced muscular SAA1 accumulation could be reproduced in a sepsis mouse model. Conclusions: Skeletal muscle contributes to general inflammation and acute-phase response in CIM patients. Muscular SAA1 could be important for CIM pathogenesis. Trial registration: ISRCTN77569430.
Project description:IntroductionNon-excitable muscle membrane indicates critical illness myopathy (CIM) during early critical illness. We investigated predisposing risk factors for non-excitable muscle membrane at onset of critical illness.MethodsWe performed sequential measurements of muscle membrane excitability after direct muscle stimulation (dmCMAP) in 40 intensive care unit (ICU) patients selected upon a simplified acute physiology (SAPS-II) score >OR= 20 on 3 successive days within 1 week after ICU admission. We then investigated predisposing risk factors, including the insulin-like growth factor (IGF)-system, inflammatory, metabolic and hemodynamic parameters, as well as suspected medical treatment prior to first occurrence of abnormal dmCMAP. Nonparametric analysis of two-factorial longitudinal data and multivariate analysis were used for statistical analysis.Results22 patients showed abnormal muscle membrane excitability during direct muscle stimulation within 7 (5 to 9.25) days after ICU admission. Significant risk factors for the development of impaired muscle membrane excitability in univariate analysis included inflammation, disease severity, catecholamine and sedation requirements, as well as IGF binding protein-1 (IGFBP-I), but did not include either adjunctive hydrocortisone treatment in septic shock, nor administration of neuromuscular blocking agents or aminoglycosides. In multivariate Cox regression analysis, interleukin-6 remained the significant risk factor for the development of impaired muscle membrane excitability (HR 1.006, 95%-CI (1.002 to 1.011), P = 0.002).ConclusionsSystemic inflammation during early critical illness was found to be the main risk factor for development of CIM during early critical illness. Inflammation-induced impairment of growth-factor mediated insulin sensitivity may be involved in the development of CIM.
Project description:ObjectivesTo evaluate the accuracy of the peroneal nerve test (PENT) in the diagnosis of critical illness polyneuropathy (CIP) and myopathy (CIM) in the intensive care unit (ICU). We hypothesised that abnormal reduction of peroneal compound muscle action potential (CMAP) amplitude predicts CIP/CIM diagnosed using a complete nerve conduction study and electromyography (NCS-EMG) as a reference diagnostic standard.Designprospective observational study.SettingNine Italian ICUs.PatientsOne-hundred and twenty-one adult (≥18 years) neurologic (106) and non-neurologic (15) critically ill patients with an ICU stay of at least 3 days.InterventionsNone.Measurements and main resultsPATIENTS underwent PENT and NCS-EMG testing on the same day conducted by two independent clinicians who were blind to the results of the other test. Cases were considered as true negative if both NCS-EMG and PENT measurements were normal. Cases were considered as true positive if the PENT result was abnormal and NCS-EMG showed symmetric abnormal findings, independently from the specific diagnosis by NCS-EMG (CIP, CIM, or combined CIP and CIM). All data were centrally reviewed and diagnoses were evaluated for consistency with predefined electrophysiological diagnostic criteria for CIP/CIM. During the study period, 342 patients were evaluated, 124 (36.3%) were enrolled and 121 individuals with no protocol violation were studied. Sensitivity and specificity of PENT were 100% (95% CI 96.1-100.0) and 85.2% (95% CI 66.3-95.8). Of 23 patients with normal results, all presented normal values on both tests with no false negative results. Of 97 patients with abnormal results, 93 had abnormal values on both tests (true positive), whereas four with abnormal findings with PENT had only single peroneal nerve neuropathy at complete NCS-EMG (false positive).ConclusionsPENT has 100% sensitivity and high specificity, and can be used as a screening test to diagnose CIP/CIM in the ICU.
Project description:ObjectivesSystemic inflammation is a major risk factor for critical-illness myopathy (CIM) but its pathogenic role in muscle is uncertain. We observed that interleukin 6 (IL-6) and serum amyloid A1 (SAA1) expression was upregulated in muscle of critically ill patients. To test the relevance of these responses we assessed inflammation and acute-phase response at early and late time points in muscle of patients at risk for CIM.DesignProspective observational clinical study and prospective animal trial.SettingTwo intensive care units (ICU) and research laboratory.Patients/subjects33 patients with Sequential Organ Failure Assessment scores ≥ 8 on 3 consecutive days within 5 days in ICU were investigated. A subgroup analysis of 12 patients with, and 18 patients without CIM (non-CIM) was performed. Two consecutive biopsies from vastus lateralis were obtained at median days 5 and 15, early and late time points. Controls were 5 healthy subjects undergoing elective orthopedic surgery. A septic mouse model and cultured myoblasts were used for mechanistic analyses.Measurements and main resultsEarly SAA1 expression was significantly higher in skeletal muscle of CIM compared to non-CIM patients. Immunohistochemistry showed SAA1 accumulations in muscle of CIM patients at the early time point, which resolved later. SAA1 expression was induced by IL-6 and tumor necrosis factor-alpha in human and mouse myocytes in vitro. Inflammation-induced muscular SAA1 accumulation was reproduced in a sepsis mouse model.ConclusionsSkeletal muscle contributes to general inflammation and acute-phase response in CIM patients. Muscular SAA1 could be important for CIM pathogenesis.Trial registrationISRCTN77569430.
Project description:AimCritical illness myopathy (CIM) is a consequence of modern critical care, leading to skeletal muscle atrophy/paralysis with negative consequences for mortality/morbidity and health care costs. Glucocorticoids (GCs) have been proposed to trigger CIM. Here, we compare outcomes of two GCs, the commonly used prednisolone and the newly developed dissociative vamorolone in response to the intensive care unit (ICU) condition for 5 days, ie, sedation, immobilization, and mechanical ventilation.MethodsRats were divided into a 0-day sham-operated control group, and three groups exposed to 5 days ICU condition during treatment with prednisolone (PRED) or vamorolone (VAM) or none of these GCs (ICU-group). Survival, body and muscle weights, cytokine concentrations, regulation of muscle contraction in single fast- and slow-twitch muscle fibres, myofibrillar protein expression and protein degradation pathways were studied.ResultsCritical illness myopathy geno- and pheno-types were confirmed in the ICU group. However, VAM and PRED groups showed reduced atrophy/weakness than the ICU group, and muscle specific differences with more severe negative effects on fast-twitch muscle fibres in the PRED than the other groups.ConclusionThese results show that vamorolone provides a GC intervention superior to typical GCs in improving CIM outcomes. Further, the findings do not support the notion that moderate-dose GC treatment represents a factor triggering CIM.
Project description:Critical illness myopathy (CIM) is a debilitating common consequence of modern intensive care, characterized by severe muscle wasting, weakness and a decreased myosin/actin (M/A) ratio. Limb/trunk muscles are primarily affected by this myopathy while cranial nerve innervated muscles are spared or less affected, but the mechanisms underlying these muscle-specific differences remain unknown. In this time-resolved study, the cranial nerve innervated masseter muscle was studied in a unique experimental rat intensive care unit (ICU) model, where animals were exposed to sedation, neuromuscular blockade (NMB), mechanical ventilation, and immobilization for durations varying between 6 h and 14d. Gel electrophoresis, immunoblotting, RT-PCR and morphological staining techniques were used to analyze M/A ratios, myofiber size, synthesis and degradation of myofibrillar proteins, and levels of heat shock proteins (HSPs). Results obtained in the masseter muscle were compared with previous observations in experimental and clinical studies of limb muscles. Significant muscle-specific differences were observed, i.e., in the masseter, the decline in M/A ratio and muscle fiber size was small and delayed. Furthermore, transcriptional regulation of myosin and actin synthesis was maintained, and Akt phosphorylation was only briefly reduced. In studied degradation pathways, only mRNA, but not protein levels of MuRF1, atrogin-1 and the autophagy marker LC3b were activated by the ICU condition. The matrix metalloproteinase MMP-2 was inhibited and protective HSPs were up-regulated early. These results confirm that the cranial nerve innervated masticatory muscles is less affected by the ICU-stress response than limb muscles, in accordance with clinical observation in ICU patients with CIM, supporting the model' credibility as a valid CIM model.