Unknown

Dataset Information

0

Developing intelligent medical image modality classification system using deep transfer learning and LDA.


ABSTRACT: Rapid advancement in imaging technology generates an enormous amount of heterogeneous medical data for disease diagnosis and rehabilitation process. Radiologists may require related clinical cases from medical archives for analysis and disease diagnosis. It is challenging to retrieve the associated clinical cases automatically, efficiently and accurately from the substantial medical image archive due to diversity in diseases and imaging modalities. We proposed an efficient and accurate approach for medical image modality classification that can used for retrieval of clinical cases from large medical repositories. The proposed approach is developed using transfer learning concept with pre-trained ResNet50 Deep learning model for optimized features extraction followed by linear discriminant analysis classification (TLRN-LDA). Extensive experiments are performed on challenging standard benchmark ImageCLEF-2012 dataset of 31 classes. The developed approach yields improved average classification accuracy of 87.91%, which is higher up-to 10% compared to the state-of-the-art approaches on the same dataset. Moreover, hand-crafted features are extracted for comparison. Performance of TLRN-LDA system demonstrates the effectiveness over state-of-the-art systems. The developed approach may be deployed to diagnostic centers to assist the practitioners for accurate and efficient clinical case retrieval and disease diagnosis.

SUBMITTER: Hassan M 

PROVIDER: S-EPMC7393510 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Developing intelligent medical image modality classification system using deep transfer learning and LDA.

Hassan Mehdi M   Ali Safdar S   Alquhayz Hani H   Safdar Khushbakht K  

Scientific reports 20200730 1


Rapid advancement in imaging technology generates an enormous amount of heterogeneous medical data for disease diagnosis and rehabilitation process. Radiologists may require related clinical cases from medical archives for analysis and disease diagnosis. It is challenging to retrieve the associated clinical cases automatically, efficiently and accurately from the substantial medical image archive due to diversity in diseases and imaging modalities. We proposed an efficient and accurate approach  ...[more]

Similar Datasets

| S-EPMC9007400 | biostudies-literature
| S-EPMC9600639 | biostudies-literature
| S-EPMC8875959 | biostudies-literature
| S-EPMC7957953 | biostudies-literature
| S-EPMC7327346 | biostudies-literature
| S-EPMC8794113 | biostudies-literature
| S-EPMC8195382 | biostudies-literature
| S-EPMC9956933 | biostudies-literature
| S-EPMC7848437 | biostudies-literature
| S-EPMC8828884 | biostudies-literature