Unknown

Dataset Information

0

Digitally deconstructing leaves in 3D using X-ray microcomputed tomography and machine learning.


ABSTRACT: Premise:X-ray microcomputed tomography (microCT) can be used to measure 3D leaf internal anatomy, providing a holistic view of tissue organization. Previously, the substantial time needed for segmenting multiple tissues limited this technique to small data sets, restricting its utility for phenotyping experiments and limiting our confidence in the inferences of these studies due to low replication numbers. Methods and Results:We present a Python codebase for random forest machine learning segmentation and 3D leaf anatomical trait quantification that dramatically reduces the time required to process single-leaf microCT scans into detailed segmentations. By training the model on each scan using six hand-segmented image slices out of >1500 in the full leaf scan, it achieves >90% accuracy in background and tissue segmentation. Conclusions:Overall, this 3D segmentation and quantification pipeline can reduce one of the major barriers to using microCT imaging in high-throughput plant phenotyping.

SUBMITTER: Theroux-Rancourt G 

PROVIDER: S-EPMC7394714 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Digitally deconstructing leaves in 3D using X-ray microcomputed tomography and machine learning.

Théroux-Rancourt Guillaume G   Jenkins Matthew R MR   Brodersen Craig R CR   McElrone Andrew A   Forrestel Elisabeth J EJ   Earles J Mason JM  

Applications in plant sciences 20200731 7


<h4>Premise</h4>X-ray microcomputed tomography (microCT) can be used to measure 3D leaf internal anatomy, providing a holistic view of tissue organization. Previously, the substantial time needed for segmenting multiple tissues limited this technique to small data sets, restricting its utility for phenotyping experiments and limiting our confidence in the inferences of these studies due to low replication numbers.<h4>Methods and results</h4>We present a Python codebase for random forest machine  ...[more]

Similar Datasets

| S-EPMC4949686 | biostudies-literature
| S-EPMC8563473 | biostudies-literature
| S-EPMC8715218 | biostudies-literature
| S-EPMC7881192 | biostudies-literature
| S-EPMC6231253 | biostudies-literature
| S-EPMC4185970 | biostudies-literature
| S-EPMC6881049 | biostudies-literature
| S-EPMC7449096 | biostudies-literature
| S-EPMC6805882 | biostudies-literature
2013-01-01 | E-GEOD-29210 | biostudies-arrayexpress