Project description:Negative regulator of reactive oxygen species (NRROS) is a leucine-rich repeat protein expressed by microglia and perivascular macrophages. To date, 9 individuals have been reported with biallelic NRROS variants. Here, we report one individual with a severe neurodegenerative phenotype in which exome sequencing identified 2 novel variants in NRROS, a missense variant (c.185T>C, p.Leu62Pro) and a premature stop codon (c.310C>T, p.Gln104Ter). Pathological examination revealed both extensive grey and white matter involvement, dystrophic calcifications, and infiltration of foamy macrophages. This is the first reported case of NRROS variants with a mitochondrial ultrastructure abnormality noted on electron microscopy analysis of post-mortem tissue.
Project description:Familial hypocalciuric hypercalcemia type I is an autosomal dominant disorder caused by heterozygous loss-of-function mutations in the CASR gene and is characterized by moderately elevated serum calcium concentrations, low urinary calcium excretion and inappropriately normal or mildly elevated parathyroid hormone (PTH) concentrations. We performed a clinical and genetic characterization of one patient suspected of familial hypocalciuric hypercalcemia type I. Patient presented persistent hypercalcemia with normal PTH and 25-hydroxyvitamin D levels. The CASR was screened for mutations by PCR followed by direct Sanger sequencing and, in order to detect large deletions or duplications, multiplex ligation-dependent probe amplification (MLPA) was used. One large deletion of 973 nucleotides in heterozygous state (c.1733-255_2450del) was detected. This is the first large deletion detected by the MLPA technique in the CASR gene. Learning points: Molecular studies are important to confirm the differential diagnosis of FHH from primary hyperparathyroidism. Large deletions or duplications in the CASR gene can be detected by the MLPA technique. Understanding the functional impact of the mutations is critical for leading pharmacological research and could facilitate the therapy of patients.
Project description:Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.
Project description:Patients with schizophrenia and their siblings typically show subtle changes of brain structures, such as a reduction of hippocampal volume. Hippocampal volume is heritable, may explain a variety of cognitive symptoms of schizophrenia and is thus considered an intermediate phenotype for this mental illness. The aim of our analyses was to identify single-nucleotide polymorphisms (SNP) related to hippocampal volume without making prior assumptions about possible candidate genes. In this study, we combined genetics, imaging and neuropsychological data obtained from the Mind Clinical Imaging Consortium study of schizophrenia (n?=?328). A total of 743,591 SNPs were tested for association with hippocampal volume in a genome-wide association study. Gene expression profiles of human hippocampal tissue were investigated for gene regions of significantly associated SNPs. None of the genetic markers reached genome-wide significance. However, six highly correlated SNPs (rs4808611, rs35686037, rs12982178, rs1042178, rs10406920, rs8170) on chromosome 19p13.11, located within or in close proximity to the genes NR2F6, USHBP1, and BABAM1, as well as four SNPs in three other genomic regions (chromosome 1, 2 and 10) had p-values between 6.75×10(-6) and 8.3×10(-7). Using existing data of a very recently published GWAS of hippocampal volume and additional data of a multicentre study in a large cohort of adolescents of European ancestry, we found supporting evidence for our results. Furthermore, allelic differences in rs4808611 and rs8170 were highly associated with differential mRNA expression in the cis-acting region. Associations with memory functioning indicate a possible functional importance of the identified risk variants. Our findings provide new insights into the genetic architecture of a brain structure closely linked to schizophrenia. In silico replication, mRNA expression and cognitive data provide additional support for the relevance of our findings. Identification of causal variants and their functional effects may unveil yet unknown players in the neurodevelopment and the pathogenesis of neuropsychiatric disorders.
Project description:BackgroundHyperekplexia (HPX) is a rare non-epileptic disorder manifesting immediately after birth with exaggerated persistent startle reaction to unexpected auditory, somatosensory and visual stimuli, and non-habituating generalized flexor spasm in response to tapping of the nasal bridge (glabellar tap) which forms its clinical hallmark. The course of the disease is usually benign with spontaneous amelioration with age. The disorder results from aberrant glycinergic neurotransmission, and several mutations were reported in the genes encoding glycine receptor (GlyR) ?1 and ? subunits, glycine transporter GlyT2 as well as two other proteins involved in glycinergic neurotransmission gephyrin and collybistin.MethodsThe phenotype of six newborns, belonging to Saudi Arabian kindred with close consanguineous marriages, who presented with hyperekplexia associated with severe brain malformation, is described. DNA samples were available from two patients, and homozygosity scan to determine overlap with known hyperkplexia genes was performed.ResultsThe kindred consisted of two brothers married to their cousin sisters, each with three affected children who presented antenatally with excessive fetal movements. Postnatally, they were found to have microcephaly, severe hyperekplexia and gross brain malformation characterized by severe simplified gyral pattern and cerebellar underdevelopment. The EEG was normal and they responded to clonazepam. All of the six patients died within six weeks. Laboratory investigations, including metabolic screen, were unremarkable. None of the known hyperkplexia genes were present within the overlapping regions of homozygosity between the two patients for whom DNA samples were available.ConclusionsWe present these cases as a novel syndrome of lethal familial autosomal recessive hyperekplexia associated with microcephaly and severe brain malformation.
Project description:BackgroundIn clinical practice, calcifications seen on computed tomographic studies within the large brain arteries are often referred to as a surrogate marker for cholesterol-mediated atherosclerosis. However, limited data exist to support the association between calcification and atherosclerosis. In this study, we examined if intracranial arterial calcifications were associated with cholesterol-mediated intracranial large artery atherosclerosis (ILAA) within the arteries of the circle of Willis in an autopsy-based sample.MethodsWe carried out a cross-sectional analysis of histopathological characteristics of brain large arteries obtained from autopsy cases. Brain large arteries were examined for evidences of calcifications, which were rated as macroscopic (coalescent) and microscopic (scattered). In addition to calcification, we also obtained measurement of the arterial wall and the presence of ILAA and nonatherosclerotic arterial fibrosis. We built hierarchical models adjusted for demographic and vascular risk factors to assess the relationship between calcification and ILAA.ResultsIn univariate analysis, the presence of any arterial calcifications was associated with cerebral infarcts (29% vs. 14%, P<.01). Multivariate analysis revealed that among all calcifications, coalescent calcifications were not associated with ILAA. In contrast, scattered calcifications were associated with ILAA (P<.001), decreased lumen diameter (-1.87 +/- 0.41 mm, P≤.001), and increased luminal stenosis (0.03% +/- 0.01%, P≤.006). These findings were independent of age, sex, or other vascular risk factors.ConclusionsThis study demonstrates that coalescent calcifications in brain large arteries, although associated with morbidity, are not synonymous with cholesterol-driven ILAA. Understanding the precise pathological components of cerebrovascular disease, including nonatherosclerotic arterial calcifications, will help develop individualized therapies beyond amelioration of traditional risk factors such as hyperlipidemia.
Project description:Objective:To identify the phenotypic, neuroimaging, and genotype-phenotype expression of MYORG mutations. Methods:Using next-generation sequencing, we screened 86 patients with primary familial brain calcification (PFBC) from 60 families with autosomal recessive or absent family history that were negative for mutations in SLC20A2, PDGFRB, PDGBB, and XPR1. In-depth phenotyping and neuroimaging investigations were performed in all cases reported here. Results:We identified 12 distinct deleterious MYORG variants in 7 of the 60 families with PFBC. Overall, biallelic MYORG mutations accounted for 11.6% of PFBC families in our cohort. A heterogeneous phenotypic expression was identified within and between families with a median age at onset of 56.4 years, a variable combination of parkinsonism, cerebellar signs, and cognitive decline. Psychiatric disturbances were not a prominent feature. Cognitive assessment showed impaired cognitive function in 62.5% of cases. Parkinsonism associated with vertical nuclear gaze palsy was the initial clinical presentation in 1/3 of cases and was associated with central pontine calcifications. Cerebral cortical atrophy was present in 37% of cases. Conclusions:This large, multicentric study shows that biallelic MYORG mutations represent a significant proportion of autosomal recessive PFBC. We recommend screening MYORG mutations in all patients with primary brain calcifications and autosomal recessive or negative family history, especially when presenting clinically as atypical parkinsonism and with pontine calcification on brain CT.
Project description:This case report describes an individual with brain calcifications, cognitive decline, motor dysfunction, and hypocalcaemia. Exome sequencing revealed a previously reported variant in the CASR gene and a variant of uncertain significance in PDGFRB. The clinical phenotype is likely explained by the CASR variant, but we discuss how the PDGFRB variant could also participate in the phenotype.
Project description:BackgroundA de novo, pathogenic, missense variant in UBTF, c.628G>A p.Glu210Lys, has been described as the cause of an emerging neurodegenerative disorder, Childhood-Onset Neurodegeneration with Brain Atrophy (CONDBA). The p.Glu210Lys alteration yields a positively charged stretch of three lysine residues. Functional studies confirmed this change results in a stronger interaction with negatively charged DNA and gain-of-function activity when compared to the wild-type sequence. The CONDBA phenotype reported in association with p.Glu210Lys consists of normal early-neurodevelopment followed by progressive motor, cognitive, and behavioral regression in early-to-middle childhood.Methods and resultsThe current proband presented at 9 months of age with baseline developmental delay and more extensive neuroradiological findings, including pontine hypoplasia, thalamic volume loss and signal abnormality, and hypomyelination. Like the recurrent CONDBA p.Glu210Lys variant, this novel variant, c.608A>G p.(Gln203Arg) lies within the highly conserved second HMG-box homology domain and involves the replacement of the wild-type residue with a positively charged residue, arginine. Computational structural modeling demonstrates that this amino acid substitution potentiates the interaction between UBTF and DNA, likely resulting in a gain-of-function effect for the UBTF protein, UBF.ConclusionHere we present a new divergent phenotype associated with a novel, likely pathogenic, missense variant at a different position in the UBTF gene, c.608A>G p.(Gln203Arg).