Project description:Alexander disease (AxD) is a rare, autosomal dominant neurological disorder. Three clinical subtypes are distinguished based on age at onset: infantile (0-2 years), juvenile (2-13 years), and adult (>13 years). The three forms differ in symptoms and prognosis. Rapid neurological decline with a fatal course characterizes the early-onset forms, while symptoms are milder and survival is longer in the adult forms. Currently, the sole known cause of AxD is mutations in the GFAP gene, which encodes a type III intermediate filament protein that is predominantly expressed in astrocytes. A wide spectrum of GFAP mutations comprising point mutations, small insertions, and deletions is associated with the disease. The genotype-phenotype correlation remains unclear. The considerable heterogeneity in severity of disease among individuals carrying identical mutations suggests that other genetic or environmental factors probably modify age at onset or progression of AxD. Describing new cases is therefore important for establishing reliable genotype-phenotype correlations and revealing environmental factors able to modify age at onset or progression of AxD. We report the case of a 54-year-old Caucasian woman, previously diagnosed with ovarian cancer and treated with surgery and chemotherapy, who developed dysarthria, ataxia, and spastic tetraparesis involving mainly the left side. Cerebral and spinal magnetic resonance imaging (MRI) revealed a peculiar tadpole-like atrophy of the brainstem. Genetic analysis of the GFAP gene detected a heterozygous mutation in exon 1 (c.219G>C), resulting in an amino acid exchange from methionine to isoleucine at codon 73 (p.M73I). The expression of this mutant in vitro affected the formation of the intermediate filament network. Thus, we have identified a new GFAP mutation in a patient with an adult form of AxD.
Project description:Alexander disease (AxD) is a neurodegenerative astrogliopathy caused by mutation in the glial fibrillary acidic protein (GFAP) gene. A 42-year-old Korean man presented with temporary gait disturbance and psychiatric regression after a minor head trauma in the absence of bulbar symptoms and signs. Magnetic resonance images of the brain and spinal cord showed significant atrophy of the medulla oblongata and the entire spinal cord as well as contrast-enhanced T2 hypointensity in the basal ganglia. DNA sequencing revealed a novel 33-bp in-frame deletion mutation (p.Glu138_Leu148del) within the 1B rod domain of GFAP, which was predicted to be deleterious by PROVEAN analysis. To test whether the deletion mutant is disease-causing, we performed in vitro GFAP assembly and sedimentation assays, and GFAP aggregation assays in human adrenal carcinoma SW13 (Vim-) cells and rat primary astrocytes. All the assays revealed that GFAP p.Glu138_Leu148del is aggregation prone. Based on these findings, we diagnosed the patient with Type II AxD. This is a report that demonstrates the pathogenicity of InDel mutation of GFAP through functional studies. This patient's atypical presentation as well as the discrepancy between clinical symptoms and radiologic findings may extend the scope of AxD.
Project description:Alexander disease (AxD) is an astrogliopathy that predominantly affects the white matter of the central nervous system (CNS), and is caused by a mutation in the gene encoding the glial fibrillary acidic protein (GFAP), an intermediate filament primarily expressed in astrocytes and ependymal cells. The main pathologic feature of AxD is the presence of Rosenthal fibers (RFs), homogeneous eosinophilic inclusions found in astrocytes. Because of difficulties in procuring patient' CNS tissues and the presence of RFs in other pathologic conditions, there is a need to develop an in vivo assay that can determine whether a mutation in the GFAP results in aggregation and is thus disease-causing.We found a GFAP mutation (c.382G > A, p.Asp128Asn) in a 68-year-old man with slowly progressive gait disturbance with tendency to fall. The patient was tentatively diagnosed with AxD based on clinical and radiological findings. To develop a vertebrate model to assess the aggregation tendency of GFAP, we expressed several previously reported mutant GFAPs and p.Asp128Asn GFAP in zebrafish embryos.The most common GFAP mutations in AxD, p.Arg79Cys, p.Arg79His, p.Arg239Cys and p.Arg239His, and p.Asp128Asn induced a significantly higher number of GFAP aggregates in zebrafish embryos than wild-type GFAP.The p.Asp128Asn GFAP mutation is likely to be a disease-causing mutation. Although it needs to be tested more extensively in larger case series, the zebrafish assay system presented here would help clinicians determine whether GFAP mutations identified in putative AxD patients are disease-causing.
Project description:Here we review how GFAP mutations cause Alexander disease. The current data suggest that a combination of events cause the disease. These include: (i) the accumulation of GFAP and the formation of characteristic aggregates, called Rosenthal fibers, (ii) the sequestration of the protein chaperones alpha B-crystallin and HSP27 into Rosenthal fibers, and (iii) the activation of both Jnk and the stress response. These then set in motion events that lead to Alexander disease. We discuss parallels with other intermediate filament diseases and assess potential therapies as part of this review as well as emerging trends in disease diagnosis and other aspects concerning GFAP.
Project description:Alexander disease (AxD) is an astrogliopathy that primarily affects the white matter of the central nervous system (CNS). AxD is caused by mutations in a gene encoding GFAP (glial fibrillary acidic protein). The GFAP mutations in AxD have been reported to act in a gain-of-function manner partly because the identified mutations generate practically full-length GFAP. We found a novel nonsense mutation (c.1000 G>T, p.(Glu312Ter); also termed p.(E312*)) within a rod domain of GFAP in a 67-year-old Korean man with a history of memory impairment and leukoencephalopathy. This mutation, GFAP p.(E312*), removes part of the 2B rod domain and the whole tail domain from the GFAP. We characterized GFAP p.(E312*) using western blotting, in vitro assembly and sedimentation assay, and transient transfection of human adrenal cortex carcinoma SW13 (Vim(+)) cells with plasmids encoding GFAP p.(E312*). The GFAP p.(E312*) protein, either alone or in combination with wild-type GFAP, elicited self-aggregation. In addition, the assembled GFAP p.(E312*) aggregated into paracrystal-like structures, and GFAP p.(E312*) elicited more GFAP aggregation than wild-type GFAP in the human adrenal cortex carcinoma SW13 (Vim(+)) cells. Our findings are the first report, to the best of our knowledge, on this novel nonsense mutation of GFAP that is associated with AxD and paracrystal formation.
Project description:Mutations in the F-box only protein 7 (FBXO7) gene are the cause of autosomal recessive parkinsonian-pyramidal syndrome. Herein, we report a patient with a novel FBXO7 mutation with a unique clinical presentation. A 43-year-old male visited our hospital with complaints of progressing gait disturbance since a generalized tonic clonic seizure. There were no past neurological symptoms or familial disorders. Neurological examination revealed bradykinesia, masked face, stooped posture, parkinsonian gait, and postural instability. The bilateral uptake by dopamine transporters was nearly abolished, as determined by N-(3-[18F]fluoropropyl)- 2β-carbon ethoxy-3β-(4-iodophenyl) nortropane positron emission tomography (18F-FP-CIT PET). Next-generation sequencing revealed a heterozygous c.1066_1069delTCTG (p.Ser356ArgfsTer56) frameshift variant and a heterozygous c.80G>A (p.Arg27His) missense variant of the FBXO7 gene. The patient's specific clinical features, medication-refractory parkinsonism and seizures further broaden the spectrum of FBXO7 mutations. The nearly abolished dopamine transporter uptake identified by 18F-FP-CIT PET is frequently found in patients with FBXO7 mutations, which is different from the usual rostrocaudal gradient that is observed in patients with Parkinson's disease.
Project description:Alexander disease (AxD) is a usually fatal astrogliopathy primarily caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP), an intermediate filament protein expressed in astrocytes. We describe three patients with unique characteristics, and whose mutations have implications for AxD diagnosis and studies of intermediate filaments. Patient 1 is the first reported case with a noncoding mutation. The patient has a splice site change producing an in-frame deletion of exon 4 in about 10% of the transcripts. Patient 2 has an insertion and deletion at the extreme end of the coding region, resulting in a short frameshift. In addition, the mutation was found in buccal DNA but not in blood DNA, making this patient the first reported chimera. Patient 3 has a single-base deletion near the C-terminal end of the protein, producing a short frameshift. These findings recommend inclusion of intronic splice site regions in genetic testing for AxD, indicate that alteration of only a small fraction of GFAP can produce disease, and provide caution against tagging intermediate filaments at their C-terminal end for cell biological investigations.
Project description:Alexander disease (AxD) is a rare hereditary neurodegenerative disorder caused by glial fibrillary acidic protein (GFAP) gene mutations, most of which are missense mutations. We present an AxD case with a novel de novo three-base duplication mutation in GFAP resulting in E243dup.
Project description:ObjectiveTo characterize Alexander disease (AxD) phenotypes and determine correlations with age at onset (AAO) and genetic mutation. AxD is an astrogliopathy usually characterized on MRI by leukodystrophy and caused by glial fibrillary acidic protein (GFAP) mutations.MethodsWe present 30 new cases of AxD and reviewed 185 previously reported cases. We conducted Wilcoxon rank sum tests to identify variables scaling with AAO, survival analysis to identify predictors of mortality, and ?(2) tests to assess the effects of common GFAP mutations. Finally, we performed latent class analysis (LCA) to statistically define AxD subtypes.ResultsLCA identified 2 classes of AxD. Type I is characterized by early onset, seizures, macrocephaly, motor delay, encephalopathy, failure to thrive, paroxysmal deterioration, and typical MRI features. Type II is characterized by later onset, autonomic dysfunction, ocular movement abnormalities, bulbar symptoms, and atypical MRI features. Survival analysis predicted a nearly 2-fold increase in mortality among patients with type I AxD relative to those with type II. R79 and R239 GFAP mutations were most common (16.6% and 20.3% of all cases, respectively). These common mutations predicted distinct clinical outcomes, with R239 predicting the most aggressive course.ConclusionsAAO and the GFAP mutation site are important clinical predictors in AxD, with clear correlations to defined patterns of phenotypic expression. We propose revised AxD subtypes, type I and type II, based on analysis of statistically defined patient groups.
Project description:Heterozygous, de novo mutations in the glial fibrillary acidic protein (GFAP) gene have recently been reported in 12 patients affected by neuropathologically proved Alexander disease. We searched for GFAP mutations in a series of patients who had heterogeneous clinical symptoms but were candidates for Alexander disease on the basis of suggestive neuroimaging abnormalities. Missense, heterozygous, de novo GFAP mutations were found in exons 1 or 4 for 14 of the 15 patients analyzed, including patients without macrocephaly. Nine patients carried arginine mutations (four had R79H; four had R239C; and one had R239H) that have been described elsewhere, whereas the other five had one of four novel mutations, of which two affect arginine (2R88C and 1R88S) and two affect nonarginine residues (1L76F and 1N77Y). All mutations were located in the rod domain of GFAP, and there is a correlation between clinical severity and the affected amino acid. These results confirm that GFAP mutations are a reliable molecular marker for the diagnosis of infantile Alexander disease, and they also form a basis for the recommendation of GFAP analysis for prenatal diagnosis to detect potential cases of germinal mosaicism.