Project description:Episodic ataxia type 2 (EA2) is a rare autosomal dominant disorder characterized by motor incoordination, paroxysmal dystonia, vertigo, nystagmus and more recently cognitive deficits. To date over 100 mutations in the CACNA1A gene have been identified in EA2 patients leading to a loss of P/Q-type channel activity, dysfunction of cerebellar Purkinje cells and motor incoordination. To determine if the cerebellum is contributing to these cognitive deficits, we examined two different EA2 mouse models for cognition impairments where CACNA1A was removed specifically from cerebellar Purkinje or granule cells postnatally. Both mutant mouse models showed anxiolytic behavior to lighted, open areas in the open field and light/dark place preference tests but enhanced anxiousness in the novel suppressed feeding test. However, EA2 mice continued to show augmented latencies in the light/dark preference test and when the arena was divided into two dark zones in the dark/dark preference test. Moreover, increased latencies were also displayed in the novel object recognition test, indicating that EA2 mice are indecisive and anxious to explore new territories and objects and may have memory recognition deficits. Exposure to a foreign mouse led to deficiencies in attention and sniffing as well as in social and genital sniffing. These data suggest that postnatal removal of the P/Q type calcium channel from the cerebellum regulates neuronal activity involved in anxiety, memory, decision making and social interactions. Our EA2 mice will provide a model to identify the mechanisms and therapeutic agents underlying cognitive and psychiatric disorders seen in EA2 patients.
Project description:Hereditary myopathies represent a clinically and genetically heterogeneous group of neuromuscular disorders, characterized by highly variable clinical presentations and frequently overlapping phenotypes with other neuromuscular disorders, likely influenced by genetic and environmental modifiers. Genetic testing is often challenging due to ambiguous clinical diagnosis. Here, we present the case of a family with clinical and Electromyography (EMG) features resembling a myotonia-like disorder in which Whole Exome Sequencing (WES) analysis revealed the co-segregation of two rare missense variants in UBR4 and HSPG2, genes previously associated with episodic ataxia 8 (EA8). A review of the literature highlighted a striking overlap between the clinical and the molecular features of our family and the previously described episodic ataxias (EAs), which raises concerns about the genotype-phenotype correlation, clinical variability, and the confounding overlap in these groups of disorders. This emphasizes the importance of thoroughly framing the patient's phenotype. The more clear-cut the diagnosis, the easier the identification of a genetic determinant, and the better the prognosis and the treatment of patients.
Project description:Episodic ataxia type-2 (EA2) is an inherited movement disorder caused by mutations in the gene encoding the Ca(v)2.1alpha1 subunit of the P/Q-type voltage-gated calcium channel that result in an overall reduction in the P/Q-type calcium current. A consequence of these mutations is loss of precision of pacemaking in cerebellar Purkinje cells. This diminished precision reduces the information encoded by Purkinje cells and is thought to contribute to symptoms associated with this disorder. The loss of the precision of pacemaking in EA2 is the consequence of reduced activation of calcium-dependent potassium channels (K(Ca)) by the smaller calcium current and in vitro can be pharmacologically restored by K(Ca) activators. We used a well established mouse model of EA2, the tottering (tg/tg) mouse, to examine the potential therapeutic utility of one such Food and Drug Administration (FDA)-approved compound, chlorzoxazone (CHZ). Compared with wild-type Purkinje cells, we found the firing rate of tg/tg Purkinje cells in acutely prepared cerebellar slices to be very irregular. Bath application of CHZ successfully restored the precision of pacemaking in a dose-dependent manner. Oral administration of CHZ to tg/tg mice improved their baseline motor performance and reduced the severity, frequency, and duration of episodes of dyskinesia without producing any adverse effects. We propose the use of CHZ, which is currently FDA approved as a muscle relaxant, as a safe and novel treatment of EA2.
Project description:Adenosine-to-inosine RNA editing in transcripts encoding the voltage-gated potassium channel Kv1.1 converts an isoleucine to valine codon for amino acid 400, speeding channel recovery from inactivation. Numerous Kv1.1 mutations have been associated with the human disorder Episodic Ataxia Type-1 (EA1), characterized by stress-induced ataxia, myokymia, and increased prevalence of seizures. Three EA1 mutations, V404I, I407M, and V408A, are located within the RNA duplex structure required for RNA editing. Each mutation decreased RNA editing both in vitro and using an in vivo mouse model bearing the V408A allele. Editing of transcripts encoding mutant channels affects numerous biophysical properties including channel opening, closing, and inactivation. Thus EA1 symptoms could be influenced not only by the direct effects of the mutations on channel properties, but also by their influence on RNA editing. These studies provide the first evidence that mutations associated with human genetic disorders can affect cis-regulatory elements to alter RNA editing.
Project description:Episodic ataxia type 1 (EA1) is a monogenic channelopathy caused by mutations of the potassium channel gene KCNA1. Affected individuals carrying the same mutation can exhibit considerable variability in the severity of ataxia, neuromyotonia, and other associated features. We investigated the phenotypic heterogeneity of EA1 in 2 sets of identical twins to determine the contribution of environmental factors to disease severity. One of the mutations was also found in a distantly related family, providing evidence of the influence of genetic background on the EA1 phenotype.We evaluated 3 families with an EA1 phenotype, 2 of which included monozygotic twins. We sequenced the KCNA1 gene and studied the biophysical consequences of the mutations in HEK cells.We identified a new KCNA1 mutation in each pair of twins. Both pairs reported striking differences in the clinical severity of symptoms. The F414S mutation identified in one set of twins also occurred in a distantly related family in which seizures complicated the EA1 phenotype. The other twins had an R307C mutation, the first EA1 mutation to affect an arginine residue in the voltage-sensor domain. Both mutants when expressed exerted a dominant-negative effect on wild-type channels.These results broaden the range of KCNA1 mutations and reveal an unexpectedly large contribution of nongenetic factors to phenotypic variability in EA1. The occurrence of epilepsy in 1 of 2 families with the F414S mutation suggests an interplay of KCNA1 with other genetic factors.
Project description:Episodic ataxia type 2 (EA2) is an autosomal dominant neurological disorder characterized by paroxysmal attacks of ataxia, vertigo, and nausea that usually last hours to days. It is caused by loss-of-function mutations in CACNA1A, the gene encoding the pore-forming α1 subunit of P/Q-type voltage-gated Ca2+ channels. Although pharmacological treatments, such as acetazolamide and 4-aminopyridine, exist for EA2, they do not reduce or control the symptoms in all patients. CACNA1A is heavily spliced and some of the identified EA2 mutations are predicted to disrupt selective isoforms of this gene. Modulating splicing of CACNA1A may therefore represent a promising new strategy to develop improved EA2 therapies. Because RNA splicing is dysregulated in many other genetic diseases, several tools, such as antisense oligonucleotides, trans-splicing, and CRISPR-based strategies, have been developed for medical purposes. Here, we review splicing-based strategies used for genetic disorders, including those for Duchenne muscular dystrophy, spinal muscular dystrophy, and frontotemporal dementia with Parkinsonism linked to chromosome 17, and discuss their potential applicability to EA2.
Project description:Autosomal dominant episodic ataxia type 2 (EA2) is caused by variants in CACNA1A. We examined a 20-year-old male with EA symptoms from a Japanese family with hereditary EA. Cerebellar atrophy was not evident, but single photon emission computed tomography showed cerebellar hypoperfusion. We identified a novel nonsynonymous variant in CACNA1A, NM_001127222.2:c.1805T>G (p.Leu602Arg), which is predicted to be functionally deleterious; therefore, this variant is likely responsible for EA2 in this pedigree.
Project description:Heterozygous mutations of KCNA1, the gene encoding potassium channel Kv1.1 subunits, cause episodic ataxia type 1 (EA1), which is characterized by paroxysmal cerebellar incoordination and interictal myokymia. Some mutations are also associated with epilepsy. Although Kv1.1-containing potassium channels play important roles in neuronal excitability and neurotransmitter release, it is not known how mutations associated with different clinical features affect the input-output relationships of individual neurons. We transduced rat hippocampal neurons, which were cultured on glial micro-islands, with lentiviruses expressing wild-type or mutant human KCNA1, and injected either depolarizing currents to evoke action potentials or depolarizing voltage commands to evoke autaptic currents. alpha-Dendrotoxin and tetraethylammonium allowed a pharmacological dissection of potassium currents underlying excitability and neurotransmission. Overexpression of wild-type Kv1.1 decreased both neuronal excitability and neurotransmitter release. By contrast, the C-terminus-truncated R417stop mutant, which is associated with severe drug-resistant EA1, had the opposite effect: increased excitability and release probability. Another mutant, T226R, which is associated with EA1 that is complicated by contractures and epilepsy, had no detectable effect on neuronal excitability; however, in common with R417stop, it markedly enhanced neurotransmitter release. The results provide direct evidence that EA1 mutations increase neurotransmitter release, and provide an insight into mechanisms underlying the phenotypic differences that are associated with different mutations.