Unknown

Dataset Information

0

Local Distortions and Dynamics in Hydrated Y-Doped BaZrO3.


ABSTRACT: Y-doped BaZrO3 is a promising proton conductor for intermediate temperature solid oxide fuel cells. In this work, a combination of static DFT calculations and DFT based molecular dynamics (DFT-MD) was used to study proton conduction in this material. Geometry optimizations of 100 structures with a 12.5% dopant concentration allowed us to identify a clear correlation between the bending of the metal-oxygen-metal angle and the energies of the simulated cells. Depending on the type of bending, two configurations, designated as inward bending and outward bending, were defined. The results demonstrate that a larger bending decreases the energy and that the lowest energies are observed for structures combining inward bending with protons being close to the dopant atoms. These lowest energy structures are the ones with the strongest hydrogen bonds. DFT-MD simulations in cells with different yttrium distributions provide complementary microscopic information on proton diffusion as they capture the dynamic distortions of the lattice caused by thermal motion. A careful analysis of the proton jumps between different environments confirmed that the inward and outward bending states are relevant for the understanding of proton diffusion. Indeed, intra-octahedral jumps were shown to only occur starting from an outward configuration while the inward configuration seems to favor rotations around the oxygen. On average, in the DFT-MD simulations, the hydrogen bond lengths are shorter for the outward configuration which facilitates the intra-octahedral jumps. Diffusion coefficients and activation energies were also determined and compared to previous theoretical and experimental data, showing a good agreement with previous data measuring local proton motion.

SUBMITTER: Torayev A 

PROVIDER: S-EPMC7397726 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Local Distortions and Dynamics in Hydrated Y-Doped BaZrO<sub>3</sub>.

Torayev Amangeldi A   Sperrin Luke L   Gomez Maria A MA   Kattirtzi John A JA   Merlet Céline C   Grey Clare P CP  

The journal of physical chemistry. C, Nanomaterials and interfaces 20200623 30


Y-doped BaZrO<sub>3</sub> is a promising proton conductor for intermediate temperature solid oxide fuel cells. In this work, a combination of static DFT calculations and DFT based molecular dynamics (DFT-MD) was used to study proton conduction in this material. Geometry optimizations of 100 structures with a 12.5% dopant concentration allowed us to identify a clear correlation between the bending of the metal-oxygen-metal angle and the energies of the simulated cells. Depending on the type of be  ...[more]

Similar Datasets

| S-EPMC7060693 | biostudies-literature
| S-EPMC6081486 | biostudies-literature
| S-EPMC4604520 | biostudies-literature
| S-EPMC9417828 | biostudies-literature
| S-EPMC11315727 | biostudies-literature
| S-EPMC7075158 | biostudies-literature
| S-EPMC3465392 | biostudies-literature
| S-EPMC6723951 | biostudies-literature
| S-EPMC10009859 | biostudies-literature
| S-EPMC7051846 | biostudies-literature