Unknown

Dataset Information

0

Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs.


ABSTRACT: Background:Combating infectious diseases caused by influenza virus is a major challenge due to its resistance to available drugs and vaccines, side effects, and cost of treatment. Nanomedicines are being developed to allow targeted delivery of drugs to attack specific cells or viruses. Materials and Methods:In this study, mesoporous silica nanoparticles (MSNs) functionalized with amino groups and loaded with natural prodrugs of shikimic acid (SH), quercetin (QR) or both were explored as a novel antiviral nanoformulations targeting the highly pathogenic avian influenza H5N1 virus. Also, the immunomodulatory effects were investigated in vitro tests and anti-inflammatory activity was determined in vivo using the acute carrageenan-induced paw edema rat model. Results:Prodrugs alone or the MSNs displayed weaker antiviral effects as evidenced by virus titers and plaque formation compared to nanoformulations. The MSNs-NH2-SH and MSNs-NH2-SH-QR2 nanoformulations displayed a strong virucidal by inactivating the H5N1 virus. They induced also strong immunomodulatory effects: they inhibited cytokines (TNF-?, IL-1?) and nitric oxide production by approximately 50% for MSNs-NH2-SH-QR2 (containing both SH and QR). Remarkable anti-inflammatory effects were observed during in vivo tests in an acute carrageenan-induced rat model. Conclusion:Our preliminary findings show the potential of nanotechnology for the application of natural prodrug substances to produce a novel safe, effective, and affordable antiviral drug.

SUBMITTER: AbouAitah K 

PROVIDER: S-EPMC7398888 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs.

AbouAitah Khaled K   Swiderska-Sroda Anna A   Kandeil Ahmed A   Salman Asmaa M M AMM   Wojnarowicz Jacek J   Ali Mohamed A MA   Opalinska Agnieszka A   Gierlotka Stanislaw S   Ciach Tomasz T   Lojkowski Witold W  

International journal of nanomedicine 20200722


<h4>Background</h4>Combating infectious diseases caused by influenza virus is a major challenge due to its resistance to available drugs and vaccines, side effects, and cost of treatment. Nanomedicines are being developed to allow targeted delivery of drugs to attack specific cells or viruses.<h4>Materials and methods</h4>In this study, mesoporous silica nanoparticles (MSNs) functionalized with amino groups and loaded with natural prodrugs of shikimic acid (SH), quercetin (QR) or both were explo  ...[more]

Similar Datasets

| S-EPMC9055143 | biostudies-literature
| S-EPMC5431745 | biostudies-literature
| S-EPMC6628080 | biostudies-literature
| S-EPMC10006208 | biostudies-literature
| S-EPMC7369735 | biostudies-literature
| S-EPMC4051719 | biostudies-literature
| S-EPMC4508298 | biostudies-literature
| S-EPMC7439364 | biostudies-literature
| S-EPMC6150386 | biostudies-literature
| S-EPMC5995188 | biostudies-literature