Project description:Delivering personalized therapeutic options to cancer patients based on the genetic and molecular aberrations of the tumor offers great promise to improve the outcomes of cancer therapy. Significant progress in biotechnology has allowed the measurement of tens of thousands of "omic" data points across multiple levels (DNA, RNA protein, metabolomics) from a single tumor biopsy sample in a reasonable time frame for making clinical decisions. With this data in hand, the challenge from the bioinformatics and systems biology point of view is how does one convert data into information and knowledge that can improve the delivery of personalized therapy to the patient.
Project description:Although neuropsychiatric (NP) disorders are among the top causes of disability worldwide with enormous financial costs, they can still be viewed as part of the most complex disorders that are of unknown etiology and incomprehensible pathophysiology. The complexity of NP disorders arises from their etiologic heterogeneity and the concurrent influence of environmental and genetic factors. In addition, the absence of rigid boundaries between the normal and diseased state, the remarkable overlap of symptoms among conditions, the high inter-individual and inter-population variations, and the absence of discriminative molecular and/or imaging biomarkers for these diseases makes difficult an accurate diagnosis. Along with the complexity of NP disorders, the practice of psychiatry suffers from a "top-down" method that relied on symptom checklists. Although checklist diagnoses cost less in terms of time and money, they are less accurate than a comprehensive assessment. Thus, reliable and objective diagnostic tools such as biomarkers are needed that can detect and discriminate among NP disorders. The real promise in understanding the pathophysiology of NP disorders lies in bringing back psychiatry to its biological basis in a systemic approach which is needed given the NP disorders' complexity to understand their normal functioning and response to perturbation. This approach is implemented in the systems biology discipline that enables the discovery of disease-specific NP biomarkers for diagnosis and therapeutics. Systems biology involves the use of sophisticated computer software "omics"-based discovery tools and advanced performance computational techniques in order to understand the behavior of biological systems and identify diagnostic and prognostic biomarkers specific for NP disorders together with new targets of therapeutics. In this review, we try to shed light on the need of systems biology, bioinformatics, and biomarkers in neuropsychiatry, and illustrate how the knowledge gained through these methodologies can be translated into clinical use providing clinicians with improved ability to diagnose, manage, and treat NP patients.
Project description:Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.
Project description:Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools.
Project description:Genome-modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre-defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome-scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering.
Project description:Obstetric diseases remain underserved and understudied. Drug repurposing-utilization of a drug whose use is accepted in one condition for a different condition-could represent a rapid and low-cost way to identify new therapies that are known to be safe. In diseases of pregnancy, the known safety profile is a strong additional incentive. We describe the techniques and steps used in the use of 'omics data for drug repurposing. We illustrate these techniques using case studies of published drug repurposing projects. We provide a set of available databases with low barriers to entry which investigators can use to perform their own projects. The promise of 'omics techniques is unbiased screening, either of all drug targets or of all patients using particular drugs to find which are likely to alter disease risk or progression. However, we caution that reproducibility across the underlying studies, and thus the drugs suggested for repurposing, can be poor. We suggest that improved nosology, for example correlating patient clinical conditions with placental pathology, could yield more robust associations. We conclude that 'omics-driven drug repurposing represents a potential fruitful path to discover new, safe treatments of obstetric diseases.
Project description:Bioinformatics analysis has become an integral part of research in biology. However, installation and use of scientific software can be difficult and often requires technical expert knowledge. Reasons are dependencies on certain operating systems or required third-party libraries, missing graphical user interfaces and documentation, or nonstandard input and output formats. In order to make bioinformatics software easily accessible to researchers, we here present a web-based platform. The Center for Bioinformatics Tuebingen (ZBIT) Bioinformatics Toolbox provides web-based access to a collection of bioinformatics tools developed for systems biology, protein sequence annotation, and expression data analysis. Currently, the collection encompasses software for conversion and processing of community standards SBML and BioPAX, transcription factor analysis, and analysis of microarray data from transcriptomics and proteomics studies. All tools are hosted on a customized Galaxy instance and run on a dedicated computation cluster. Users only need a web browser and an active internet connection in order to benefit from this service. The web platform is designed to facilitate the usage of the bioinformatics tools for researchers without advanced technical background. Users can combine tools for complex analyses or use predefined, customizable workflows. All results are stored persistently and reproducible. For each tool, we provide documentation, tutorials, and example data to maximize usability. The ZBIT Bioinformatics Toolbox is freely available at https://webservices.cs.uni-tuebingen.de/.
Project description:BackgroundThe Bioinformatics Resource Manager (BRM) is a web-based tool developed to facilitate identifier conversion and data integration for Homo sapiens (human), Mus musculus (mouse), Rattus norvegicus (rat), Danio rerio (zebrafish), and Macaca mulatta (macaque), as well as perform orthologous conversions among the supported species. In addition to providing a robust means of identifier conversion, BRM also incorporates a suite of microRNA (miRNA)-target databases upon which to query target genes or to perform reverse target lookups using gene identifiers.ResultsBRM has the capability to perform cross-species identifier lookups across common identifier types, directly integrate datasets across platform or species by performing identifier retrievals in the background, and retrieve miRNA targets from multiple databases simultaneously and integrate the resulting gene targets with experimental mRNA data. Here we use workflows provided in BRM to integrate RNA sequencing data across species to identify common biomarkers of exposure after treatment of human lung cells and zebrafish to benzo[a]pyrene (BAP). We further use the miRNA Target workflow to experimentally determine the role of miRNAs as regulators of BAP toxicity and identify the predicted functional consequences of miRNA-target regulation in our system. The output from BRM can easily and directly be uploaded to freely available visualization tools for further analysis. From these examples, we were able to identify an important role for several miRNAs as potential regulators of BAP toxicity in human lung cells associated with cell migration, cell communication, cell junction assembly and regulation of cell death.ConclusionsOverall, BRM provides bioinformatics tools to assist biologists having minimal programming skills with analysis and integration of high-content omics' data from various transcriptomic and proteomic platforms. BRM workflows were developed in Java and other open-source technologies and are served publicly using Apache Tomcat at https://cbb.pnnl.gov/brm/ .