Unknown

Dataset Information

0

Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment.


ABSTRACT: We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.

SUBMITTER: Nhu VH 

PROVIDER: S-EPMC7400293 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment.

Nhu Viet-Ha VH   Mohammadi Ayub A   Shahabi Himan H   Ahmad Baharin Bin BB   Al-Ansari Nadhir N   Shirzadi Ataollah A   Shirzadi Ataollah A   Clague John J JJ   Jaafari Abolfazl A   Chen Wei W   Nguyen Hoang H  

International journal of environmental research and public health 20200708 14


We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference v  ...[more]

Similar Datasets

| S-EPMC4405769 | biostudies-other
| S-EPMC6814064 | biostudies-literature
| S-EPMC7215797 | biostudies-literature
| S-EPMC8481530 | biostudies-literature
| S-EPMC7872264 | biostudies-literature
| S-EPMC9575843 | biostudies-literature
| S-EPMC10174567 | biostudies-literature
| S-EPMC7473782 | biostudies-literature
| S-EPMC7924550 | biostudies-literature
| S-EPMC5021884 | biostudies-literature