Project description:In early embryogenesis, the primitive streak (PrS) generates the mesendoderm and is essential for organogenesis. However, because the PrS is a minute and transient tissue, elucidating the mechanism of its formation has been challenging. We performed comprehensive screening of 2 knockout mouse databases based on the fact that failure of PrS formation is lethal. We identified 812 genes involved in various cellular functions and responses that might be linked to PrS formation, with the category of greatest abundance being "Metabolism." In this study, we focused on genes of sphingolipid metabolism and investigated their roles in PrS formation using an in vitro mouse ES cell differentiation system. We show here that elevated intracellular ceramide negatively regulates gene expression essential for PrS formation and instead induces neurogenesis. In addition, sphingosine-1-phosphate (a ceramide derivative) positively regulates neural maturation. Our results indicate that ceramide regulates both PrS formation and the induction of neural differentiation.
Project description:Migrasomes are recently discovered vesicle-like structures on retraction fibers of migrating cells that have been linked with transfer of cellular contents, shedding of unwanted materials, and information integration. However, whether and how the cell migration paradigm regulates migrasome formation is not clear. Here, we report that there are significantly fewer migrasomes in turning cells compared with straight persistently migrating cells. The major insight underlying this observation is that as the cells elongate, their rear ends become narrower, subsequently resulting in fewer retraction fibers during impersistent migration. In addition to migration persistence, we reveal that migration speed positively corelates with migrasome formation, owing to the derived length of retraction fibers. Substantiating our hypothesis, genetically removing vimentin compromises cell migration speed and persistence and leads to fewer migrasomes. Together, our data explicate the critical roles of two cell migration patterns, persistence and speed, in the control of migrasome formation by regulating retraction fibers.
Project description:With the ever-increasing number of synthesis-on-demand compounds for drug lead discovery, there is a great need for efficient search technologies. We present the successful application of a virtual screening method that combines two advances: (1) it avoids full library enumeration (2) products are evaluated by molecular docking, leveraging protein structural information. Crucially, these advances enable a structure-based technique that can efficiently explore libraries with billions of molecules and beyond. We apply this method to identify inhibitors of ROCK1 from almost one billion commercially available compounds. Out of 69 purchased compounds, 27 (39%) have Ki values < 10 µM. X-ray structures of two leads confirm their docked poses. This approach to docking scales roughly with the number of reagents that span a chemical space and is therefore multiple orders of magnitude faster than traditional docking.
Project description:Migrasomes, the newly discovered cellular organelles that form large vesicle-like structures on the retraction fibers of migrating cells, are thought to be involved in communication between neighboring cells, cellular content transfer, unwanted material shedding, and information integration. Although their formation has been described previously, the molecular mechanisms of migrasome biogenesis are largely unknown. Here, we developed a cell line that overexpresses GFP-tetraspanin4, enabling observation of migrasomes. To identify compounds that regulate migrasome activity in retinal pigment epithelial (RPE) cells, we screened a fecal chemical library and identified cadaverine, a biogenic amine, as a potent migrasome formation inducer. Compared with normal migrating cells, those treated with cadaverine had significantly more migrasomes. Putrescine, another biogenic amine, also increased migrasome formation. Trace amine-associated receptor 8 (TAAR8) depletion inhibited migrasome increase in cadaverine-treated RPE cells, and cadaverine also inhibited protein kinase A phosphorylation. In RPE cells, cadaverine triggers migrasome formation via a TAAR8-mediated protein kinase A signaling pathway.
Project description:In early embryogenesis, the primitive streak (PrS) generates the mesendoderm and is essential for organogenesis. However, because the PrS is a minute and transient tissue, elucidating the mechanism of its formation had been challenging. We had identified ceramide metabolism to regulate PrS formation. We investigated how C2 ceramide, a cell-permeable form of ceramide, affects gene expression for PrS formation.
Project description:During the bloodstream stage of the Trypanosoma brucei lifecycle, the parasite exists as the proliferative slender-form or the non-proliferative, transmissible, stumpy-form. The transition from the slender to stumpy-form is stimulated by a density-dependent mechanism and is important in infection dynamics, ordered antigenic variation and disease transmissibility. Here, we use a monomorphic reporter cell line in a whole-cell fluorescence-based assay to screen over 6000 small molecules from a kinase-focussed compound library for their ability to induce stumpy-like formation in a high-throughput screening programme. This identified one compound able to induce modest, yet specific, changes in gene expression indicative of a partial differentiation to stumpy forms. This not only provides a potential tool for the further understanding of stumpy formation, but also demonstrates the use of high throughput screening in the identification of compounds able to induce specific phenotypes, such as differentiation, in African trypanosomes. Examination of gene expression in response to treatment with DDD00015314.
Project description:Sodium chloride promotes vascular fibrosis, arterial hypertension, pro-inflammatory immune cell polarization and endothelial dysfunction, all of which might influence outcomes following stroke. But despite enormous translational relevance, the functional importance of sodium chloride in the pathophysiology of acute ischemic stroke is still unclear. In the current study, we show that high-salt diet leads to significantly worse functional outcomes, increased infarct volumes, and a loss of astrocytes and cortical neurons in acute ischemic stroke. While analyzing the underlying pathologic processes, we identified the migrasome as a novel, sodium chloride-driven pathomechanism in acute ischemic stroke. The migrasome was previously described in vitro as a migrating organelle, which incorporates and dispatches cytosol of surrounding cells and plays a role in intercellular signaling, whereas a pathophysiological meaning has not been elaborated. We here confirm previously reported characteristics of the migrasome in vivo. Immunohistochemistry, electron microscopy and proteomic analyses further demonstrate that the migrasome incorporates and dispatches cytosol of surrounding neurons following stroke. The clinical relevance of these findings is emphasized by neuropathological examinations, which detected migrasome formation in infarcted brain parenchyma of human stroke patients. In summary, we demonstrate that high-salt diet aggravates stroke outcomes, and we characterize the migrasome as a novel mechanism in acute stroke pathophysiology.
Project description:Dysregulation of the tightly controlled protein phosphorylation networks that govern cellular behavior causes cancer. The membrane-associated, intracellular protein tyrosine phosphatase PTP4A3 is overexpressed in human colorectal cancer and contributes to cell migration and invasion. To interrogate further the role of PTP4A3 in colorectal cancer cell migration and invasion, we deleted the Ptp4a3 gene from murine colorectal tumor cells. The resulting PTP4A3-/- cells exhibited impaired colony formation, spheroid formation, migration, and adherence compared with the paired PTP4A3fl/fl cells. We replicated these phenotypic changes using the new small-molecule, allosteric PTP4A3 inhibitor JMS-053. A related structure, JMS-038, which lacked phosphatase inhibition, displayed no cellular activity. Reduction in cell viability and colony formation by JMS-053 occurred in both mouse and human colorectal cell lines and required PTP4A3 expression. Ptp4a3 deletion increased the expression of extracellular matrix (ECM) and adhesion genes, including the tumor suppressor Emilin 1. JMS-053 also increased Emilin 1 gene expression. Moreover, The Cancer Genome Atlas genomic database revealed human colorectal tumors with high Ptp4a3 expression had low Emilin 1 expression. These chemical and biologic reagents reveal a previously unknown communication between the intracellular PTP4A3 phosphatase and the ECM and support efforts to pharmacologically target PTP4A3.-McQueeney, K. E., Salamoun, J. M., Ahn J. G., Pekic, P., Blanco, I. K., Struckman, H. L., Sharlow, E. R., Wipf, P., Lazo, J. S. A chemical genetics approach identifies PTP4A3 as a regulator of colon cancer cell adhesion.
Project description:Circulating carbohydrates are an essential energy source, perturbations in which are pathognomonic of various diseases, diabetes being the most prevalent. Yet many of the genes underlying diabetes and its characteristic hyperglycaemia remain elusive. Here we use physiological and genetic interrogations in D. melanogaster to uncover the 'glucome', the complete set of genes involved in glucose regulation in flies. Partial genomic screens of ?1,000 genes yield ?160 hyperglycaemia 'flyabetes' candidates that we classify using fat body- and muscle-specific knockdown and biochemical assays. The results highlight the minor glucose fraction as a physiological indicator of metabolism in Drosophila. The hits uncovered in our screen may have conserved functions in mammalian glucose homeostasis, as heterozygous and homozygous mutants of Ck1alpha in the murine adipose lineage, develop diabetes. Our findings demonstrate that glucose has a role in fly biology and that genetic screenings carried out in flies may increase our understanding of mammalian pathophysiology.
Project description:m6A RNA modification is implicated in multiple cellular responses. However, its function in the innate immune cells is poorly understood. Here, we identified major m6A "writers" as the top candidate genes regulating macrophage activation by LPS in an RNA binding protein focused CRISPR screening. We have confirmed that Mettl3-deficient macrophages exhibited reduced TNF-α production upon LPS stimulation in vitro. Consistently, Mettl3flox/flox;Lyzm-Cre mice displayed increased susceptibility to bacterial infection and showed faster tumor growth. Mechanistically, the transcripts of the Irakm gene encoding a negative regulator of TLR4 signaling were highly decorated by m6A modification. METTL3 deficiency led to the loss of m6A modification on Irakm mRNA and slowed down its degradation, resulting in a higher level of IRAKM, which ultimately suppressed TLR signaling-mediated macrophage activation. Our findings demonstrate a previously unknown role for METTL3-mediated m6A modification in innate immune responses and implicate the m6A machinery as a potential cancer immunotherapy target.