Unknown

Dataset Information

0

Contribution of the murI Gene Encoding Glutamate Racemase in the Motility and Virulence of Ralstonia solanacearum.


ABSTRACT: Bacterial traits for virulence of Ralstonia solanacearum causing lethal wilt in plants were extensively studied but are not yet fully understood. Other than the known virulence factors of Ralstonia solanacearum, this study aimed to identify the novel gene(s) contributing to bacterial virulence of R. solanacearum. Among the transposon-inserted mutants that were previously generated, we selected mutant SL341F12 strain produced exopolysaccharide equivalent to wild type strain but showed reduced virulence compared to wild type. In this mutant, a transposon was found to disrupt the murI gene encoding glutamate racemase which converts L-glutamate to D-glutamate. SL341F12 lost its motility, and its virulence in the tomato plant was markedly diminished compared to that of the wild type. The altered phenotypes of SL341F12 were restored by introducing a full-length murI gene. The expression of genes required for flagella assembly was significantly reduced in SL341F12 compared to that of the wild type or complemented strain, indicating that the loss of bacterial motility in the mutant was due to reduced flagella assembly. A dramatic reduction of the mutant population compared to its wild type was apparent in planta (i.e., root) than its wild type but not in soil and rhizosphere. This may contribute to the impaired virulence in the mutant strain. Accordingly, we concluded that murI in R. solanacearum may be involved in controlling flagella assembly and consequently, the mutation affects bacterial motility and virulence.

SUBMITTER: Choi K 

PROVIDER: S-EPMC7403515 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Contribution of the <i>murI</i> Gene Encoding Glutamate Racemase in the Motility and Virulence of <i>Ralstonia solanacearum</i>.

Choi Kihyuck K   Son Geun Ju GJ   Ahmad Shabir S   Lee Seung Yeup SY   Lee Hyoung Ju HJ   Lee Seon-Woo SW  

The plant pathology journal 20200801 4


Bacterial traits for virulence of <i>Ralstonia solanacearum</i> causing lethal wilt in plants were extensively studied but are not yet fully understood. Other than the known virulence factors of <i>Ralstonia solanacearum</i>, this study aimed to identify the novel gene(s) contributing to bacterial virulence of <i>R. solanacearum</i>. Among the transposon-inserted mutants that were previously generated, we selected mutant SL341F12 strain produced exopolysaccharide equivalent to wild type strain b  ...[more]

Similar Datasets

| S-EPMC95236 | biostudies-literature
| S-EPMC8328803 | biostudies-literature
| S-EPMC7056806 | biostudies-literature
| S-EPMC4371752 | biostudies-literature
| S-EPMC544231 | biostudies-literature
| S-EPMC3133175 | biostudies-other
| S-EPMC4023598 | biostudies-literature
| S-EPMC6638162 | biostudies-literature
| S-EPMC1932711 | biostudies-literature
| S-EPMC5601409 | biostudies-literature