Project description:The purpose of this study was to identify miRNAs that were dysregulated after the onset of COVID-19 and thus potentially be used for risk stratification (i.e., mortality). Therefore, we conducted a multi-center, retrospective longitudinal cohort study enrolling 142 patients with laboratory-confirmed SARS-CoV-2 infection who presented to two Canadian hospitals from May 2020 – December 2020 along with a cohort of 27 SARS-CoV-2 patients with mild upper respiratory tract symptoms and 69 SARS-CoV-2-negative patients from the ICU. Blood was biobanked from SARS-CoV-2 positive patients in the emergency department (mild), ward (moderate) or intensive care unit (severe). Assessment of miRNA expression and co-regulatory network generation revealed significant transcriptome dyregulation in pateints with severe COVID-19 that was largely different from SARS-CoV-2 negative patients in the ICU.
Project description:Cancer patients are a vulnerable population in the current coronavirus disease 2019 (COVID-19) outbreak. The impact of immune checkpoint inhibitors (ICIs) on the outcomes of COVID-19 infection in cancer patients remains largely unclear. We retrospectively investigated all solid cancer patients who received at least one cycle of ICIs at a single institution between August 2020 and August 2021. All stage IV solid cancer patients who were on or ceased ICI treatment when diagnosed with COVID-19 were eligible. All COVID-19 infections were confirmed by RT-PCR. Risk factors for hospitalization, severe symptoms, and death were analyzed. A total of 56 patients were included in our study. Twenty (35.7%) patients require hospitalization, 12 (21.4%) developed severe symptoms, and 10 (17.9%) died from COVID-19 infection. ICI treatment was interrupted in 37 patients (66.1%), 24 of whom (64.9%) had treatment resumed. Eight (80%) COVID-19-related death occurred in unvaccinated individuals. Reinfection occurred in seven patients (12.5%), and three of them died from their second COVID-19 infection. Factors associated with hospitalization were high Charlson comorbidity score (OR 1.56, 95% CI 1.10-2.23, p = 0.01) and lymphocyte ≤ 1500 mm3 (OR 10.05, 95% CI 2.03-49.85, p = 0.005). Age, chemoimmunotherapy, and ICI treatment duration were not associated with increased risk of hospitalization, severe symptoms, or COVID-19-related mortality. ICI therapy does not impose an increased risk for severe COVID-19 infection in stage IV cancer patients. Vaccination should be encouraged among this population. Clinicians should be cognizant of a potential worse outcome in COVID-19-reinfected patients.
Project description:While confirmed cases of the deadly coronavirus disease 2019 (COVID-19) have exceeded 4.7 million globally, scientists are pushing forward with efforts to develop vaccines and treatments in an attempt to slow the pandemic and lessen the disease's damage. Although no proven effective therapies for treating patients with COVID-19 or for managing their complications currently exist, the rapidly expanding knowledge regarding severe acute respiratory syndrome coronavirus 2 and its interplay with hosts provides a significant number of potential drug targets and the potential to repurpose drugs already tested in other diseases. Herein, we report the biological rationale of immune-activating drugs and a brief summary of literature data on the potential therapeutic value of immune checkpoint inhibitors that have been recently tested beyond cancer treatment for their potential to restore cellular immunocompetence.
Project description:We analyzed reports on safety and efficacy of JAK-inhibitors in patients with coronavirus infectious disease-2019 (COVID-19) published between January 1st and March 6th 2021 using the Newcastle-Ottawa and Jadad scales for quality assessment. We used disease severity as a proxy for time when JAK-inhibitor therapy was started. We identified 6 cohort studies and 5 clinical trials involving 2367 subjects treated with ruxolitinib (N = 3) or baricitinib 45 (N = 8). Use of JAK-inhibitors decreased use of invasive mechanical ventilation (RR = 0.63; [95% Confidence Interval (CI), 0.47, 0.84]; P = 0.002) and had borderline impact on rates of intensive care unit (ICU) admission (RR = 0.24 [0.06, 1.02]; P = 0.05) and acute respiratory distress syndrome (ARDS; RR = 0.50 [0.19, 1.33]; P = 0.16). JAK-inhibitors did not decrease length of hospitalization (mean difference (MD) -0.18 [-4.54, 4.18]; P = 0.94). Relative risks of death for both drugs were 0.42 [0.30, 0.59] (P < 0.001), for ruxolitinib, RR = 0.33 (0.13, 0.88; P = 0.03) and for baricitinib RR = 0.44 (0.31, 0.63; P < 0.001). Timing of JAK-inhibitor treatment during the course of COVID-19 treatment may be important in determining impact on outcome. However, these data are not consistently reported.
Project description:ObjectiveTo determine the effect of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) use prior to hospitalization on clinical outcomes in coronavirus disease 2019 (COVID-19) patients.DesignAn observational retrospective cohort study from 178 hospitals from a large health system across the United States. Patient population: Hospitalized patients (n=2726) with confirmed COVID-19 between January 1, 2020, and April 1, 2020. Main outcome(s) and measure(s): Outcomes during hospitalization, including disease severity by level of care, intensive care unit (ICU) admission, mechanical ventilator (MV) use, hospital length of stay, and in-hospital death. Patient demographics and comorbidities were also recorded.ResultsA total of 2,726 patients were included in the analysis. Three hundred ninety-eight (14.6%) patients were taking an ACEI, while 352 (12.9%) patients were taking an ARB prior to hospitalization. After adjusting for comorbidities, age, renal function, and severity of illness based on level of care, ACEI prior to admission was independently associated with decreased need for MV (odds ratio [OR] 0.56, p value 0.003) and mortality (OR 0.45, p value <0.001). Similarly, patients who took ARBs were less likely to require MV when compared to the non-renin-angiotensin-aldosterone system blockade (RAASb) group (7.4% vs 12.2%, p value 0.009, respectively). ARB prior to admission was also independently associated with decreased need for MV (OR 0.46, p value 0.001) and mortality (OR 0.66, p value 0.017) compared to the non-RAASb group.ConclusionTaking ACEIs and ARBs prior to admission for COVID-19 was independently associated with decreased need for mechanical ventilation and in-hospital mortality.
Project description:SUMMARYIn recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.
Project description:OBJECTIVE:To summarize current understanding of the effects of novel and prior coronaviruses on human reproduction, specifically male and female gametes, and in pregnancy. DESIGN:Review of English publications in PubMed and Embase to April 6, 2020. METHOD(S):Articles were screened for reports including coronavirus, reproduction, pathophysiology, and pregnancy. INTERVENTION(S):None. MAIN OUTCOME MEASURE(S):Reproductive outcomes, effects on gametes, pregnancy outcomes, and neonatal complications. RESULT(S):Seventy-nine reports formed the basis of the review. Coronavirus binding to cells involves the S1 domain of the spike protein to receptors present in reproductive tissues, including angiotensin-converting enzyme-2 (ACE2), CD26, Ezrin, and cyclophilins. Severe Acute Respiratory Syndrome Coronavirus 1 (SARS-CoV-1) may cause severe orchitis leading to germ cell destruction in males. Reports indicate decreased sperm concentration and motility for 72-90 days following Coronavirus Disease 2019 (COVID-19) infection. Gonadotropin-dependent expression of ACE2 was found in human ovaries, but it is unclear whether SARS-Coronavirus 2 (CoV-2) adversely affects female gametogenesis. Evidence suggests that COVID-19 infection has a lower maternal case fatality rate than SARS or Middle East respiratory syndrome (MERS), but anecdotal reports suggest that infected, asymptomatic women may develop respiratory symptoms postpartum. Coronavirus Disease 2019 infections in pregnancy are associated with preterm delivery. Postpartum neonatal transmission from mother to child has been reported. CONCLUSION(S):Coronavirus Disease 2019 infection may affect adversely some pregnant women and their offspring. Additional studies are needed to assess effects of SARS-CoV-2 infection on male and female fertility.
Project description:Novel coronaviruses (CoVs) are zoonotic pathogens, but the first human-to-human transmission has been reported. CoVs have the best known genome of all RNA viruses, and mutations in the genome have now been found. A pneumonia of unknown cause detected in Wuhan, China, was first reported to the WHO Country Office in China on 31 December 2019. This study aims to report early findings related to COVID-19 and provide methods to prevent and treat it.
Project description:The purpose of this study was to identify mRNAs that were dysregulated after exposure to COVID-19 patient plasma and thus possibly contribute to vascular inflammation. Therefore, we conducted a multi-center, retrospective longitudinal cohort study enrolling 142 patients with laboratory-confirmed SARS-CoV-2 infection who presented to two Canadian hospitals from May 2020 – December 2020 along with a cohort of 27 SARS-CoV-2 patients with mild upper respiratory tract symptoms and 69 SARS-CoV-2-negative patients from the ICU. Blood was biobanked from SARS-CoV-2 positive patients in the emergency department (mild), ward (moderate) or intensive care unit (severe). Assessment of gene regulatory networks, gene set enrichment analysis, and in vitro permeability follow-up suggested functional reductions in junctional protein expression. Following this, confirmed critical reductions in VE-cadherin and ZO-1 which may drive pathology in moderate and severe cases of COVID-19.
Project description:Coronavirus disease 2019 (COVID-19) is a type of viral pneumonia with an uncommon outbreak in Wuhan, China, in December 2019, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). SARS-CoV-2 is extremely contagious and has resulted in a fast pandemic of COVID-19. Currently, COVID-19 is on the rise around the world, and it poses a severe threat to public health around the world. This review provides an overview about the COVID-19 virus to increase public awareness and understanding of the virus and its consequences in terms of history, epidemiology, structure, genome, clinical symptoms, diagnosis, prevention, and treatment.