Two Novel Rare Strongly Linked Missense SNPs (P27R and A85G) Within the GDF9 Gene Were Significantly Associated With Litter Size in Shaanbei White Cashmere (SBWC) Goats.
Ontology highlight
ABSTRACT: Growth differentiation factor 9 (GDF9) is a high-fertility candidate gene that plays a crucial role in early folliculogenesis in female mammals. In this study, direct sequencing was used to screen possible SNP loci in the goat GDF9 gene. Three SNP loci, p.proline27alanine (P27R), p.leucine61leucine (L61L), and p.alanine85glycine (A85G), were identified in Shaanbei white cashmere (SBWC) goats. Among the three SNPs, two rare missense SNP loci (P27R and A85G) were discovered to be strongly linked with each other (D' value = 0.926, r 2 value = 0.703). Both P27R and A85G loci had two genotypes: wild type and heterozygous type. A85G exerted a significant effect on litter size (P = 0.029) in SBWC goats, and the heterozygous genotype was superior in comparison with the wild type. The heterozygous genotype was also superior in P27R but no significant association was found. However, the combination genotypes of P27R and A85G were identified to have superior effects on litter size (P = 3.8E-15). This information suggested that these two SNPs influenced litter size in goats synergistically. Combining this information with our previous studies, we propose that the GDF9 gene is the principal high-fertility candidate gene and that the A85G locus is a promising SNP that affects litter size in goats. These results may fill a research gap regarding rare mutations as well as provide crucial molecular markers that could be useful in marker-assisted selection (MAS) goat rearing when selecting superior individuals.
SUBMITTER: Bi Y
PROVIDER: S-EPMC7406713 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA