Integrated Bioinformatic Analysis Identifies Networks and Promising Biomarkers for Hepatitis B Virus-Related Hepatocellular Carcinoma.
Ontology highlight
ABSTRACT: Chronic infection with hepatitis B virus (HBV) has long been recognized as a dominant hazard factor for hepatocellular carcinoma (HCC) and accounts for at least half of HCC instances globally. However, the underlying molecular mechanism of HBV-linked HCC has not been completely elucidated. Here, three microarray datasets, totally containing 170 tumoral samples and 181 adjacent normal tissues from the liver of patients suffering from HBV-related HCC assembled from the Gene Expression Omnibus (GEO) database, were subjected to integrated analysis of differentially expressed genes (DEGs). Subsequently, the analysis of function and pathway enrichment as well as the protein-protein interaction network (PPI) was performed. The ten hub genes screened out from the PPI network were further subjected to expression profile and survival analysis. Overall, 329 DEGs (67 upregulated and 262 downregulated) were identified. Ten DEGs with the highest degree of connectivity included cyclin-dependent kinase 1 (CDK1), cyclin B1 (CCNB1), cyclin B2 (CCNB2), PDZ-binding kinase (PBK), abnormal spindle microtubule assembly (ASPM), nuclear division cycle 80 (NDC80), aurora kinase A (AURKA), targeting protein for xenopus kinesin-like protein 2 (TPX2), kinesin family member 2C (KIF2C), and centromere protein F (CENPF). Kaplan-Meier analysis unveiled that overexpression levels of KIF2C and TPX2 were relevant to both the poor overall survival and relapse-free survival. In summary, the hub genes validated in the present study may provide promising targets for the diagnosis, prognosis, and therapy of HBV-associated HCC. Additionally, our work uncovers various crucial biological components (e.g., extracellular exosome) and signaling pathways that participate in the progression of HCC induced by HBV, serving comprehensive knowledge of the mechanisms regarding HBV-related HCC.
SUBMITTER: Ji Y
PROVIDER: S-EPMC7407030 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA