ABSTRACT: Naproxen is a widely used non-steroidal anti-inflammatory drug for the control of postoperative inflammatory signs and symptoms in dentistry. Its association with esomeprazole has been widely studied and has yielded good results for the control of acute pain, even with the delayed absorption of naproxen owing to the presence of esomeprazole. To further understand the absorption, distribution, and metabolism of this drug alone and in combination with esomeprazole, we will analyze the pharmacokinetic parameters of naproxen and its major metabolite, 6-O-desmethylnaproxen, in saliva samples. A rapid, sensitive, and selective liquid chromatography-tandem mass spectrometric method for the simultaneous determination of naproxen and 6-O-desmethylnaproxen in saliva will be developed and validated. Sequential saliva samples from six patients will be analyzed before and 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6 8, 11, 24, 48, 72, and 96 h after the ingestion of one naproxen tablet (500 mg) and esomeprazole-associated naproxen tablets (500 + 20 mg), at two different times. After liquid-liquid extraction with ethyl acetate and HCl, the samples will be analyzed using an 8040 Triple Quadrupole Mass Spectrometer (Shimadzu, Kyoto, Japan). Separation of naproxen and its major metabolic products will be performed using a Shim-Pack XR-ODS 75Lx2.0 column and C18 pre-column (Shimadzu, Kyoto, Japan) at 40°C using a mixture of methanol and 10 mM ammonium acetate (70:30, v/v) with an injection flow of 0.3 mL/min. The total analytical run time will be 5 min. The detection and quantification of naproxen and its metabolite will be validated, which elucidate the pharmacokinetics of this drug, thereby contributing to its proper prescription for the medical and dental interventions that cause acute pain.