Ontology highlight
ABSTRACT: Background
The aim of this study was to identify prognostic long non-coding RNAs (lncRNAs) and develop a multi-lncRNA signature for suvival prediction in esophageal squamous cell carcinoma (ESCC).Methods
The clinical and gene expression data from Gene Expression Omnibus database (GSE53624, n = 119) were obtianed as training set. A total of 98 paired ESCC tumor and normal tissues were detected by RNA sequencing and used as test set. Another 84 ESCC tissues were used for real-time quantitative PCR(qRT-PCR) and as an independent validation cohort. Survival analysis, Cox regression and Kaplan-Meier analysis were performed.Results
We screened a prognostic marker of ESCC from the GSE53624 dataset and named it as the five-lncRNA signature including AC007179.1, MORF4L2-AS1, RP11-488I20.9, RP13-30A9.2, RP4-735C1.6, which could classify patients into high- and low-risk groups with significantly different survival(median survival: 1.75 years vs. 4.01 years, log rank P < 0.05). Then test dataset and validation dataset confirmed that the five-lncRNA signature can determine the prognosis of ESCC patients. Predictive independence of the prognostic marker was proved by multivariable Cox regression analyses in the three datasets (P < 0.05). In addition, the signature was found to be better than TNM stage in terms of prognosis.Conclusion
The five-lncRNA signature could be a good prognostic biomarker for ESCC patients and has important clinical value.
SUBMITTER: Zhang L
PROVIDER: S-EPMC7419219 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
Zhang Lan L Li Pan P Liu Enjie E Xing Chenju C Zhu Di D Zhang Jianying J Wang Weiwei W Jiang Guozhong G
Cancer cell international 20200810
<h4>Background</h4>The aim of this study was to identify prognostic long non-coding RNAs (lncRNAs) and develop a multi-lncRNA signature for suvival prediction in esophageal squamous cell carcinoma (ESCC).<h4>Methods</h4>The clinical and gene expression data from Gene Expression Omnibus database (GSE53624, n = 119) were obtianed as training set. A total of 98 paired ESCC tumor and normal tissues were detected by RNA sequencing and used as test set. Another 84 ESCC tissues were used for real-time ...[more]