Examining multimorbidity differences across racial groups: a network analysis of electronic medical records.
Ontology highlight
ABSTRACT: Health disparities across ethnic or racial groups are typically examined through single behavior at a time. The syndemics and multimorbidity health disparities have not been well examined by race. In this study, we study health disparities by identifying the networks of multimorbidities among individuals from seven population groups based on race, including White, African American, Asian, Hispanic, Native American, Bi- or Multi-racial and Pacific Islander. We examined a large electronic medical record (EMR) containing health records of more than 18.7 million patients and created multimorbidity networks considering their lifetime history from medical records in order to compare the network properties among seven population groups. In addition, the networks at organ system level depicting the relationship among disorders belonging to different organ systems are also compared. Our macro analysis at the organ-level indicates that African-Americans have a stronger multimorbidity network followed by Whites and Native Americans. The networks of Asians and Hispanics are sparse. Specifically, the relationship of infectious and parasitic disorders with respiratory, circulatory and genitourinary system disorders is stronger among African Americans than others. On the other hand, the relationship of mental disorders with respiratory, musculoskeletal system and connective tissue disorders is more prevalent in Whites. Similar other disparities are discussed. Recognition and explanation of such differences in multimorbidities inform the public health policies, and can inform clinical decisions as well. Our multimorbidity network analysis identifies specific differences in diagnoses among different population groups, and presents questions for biological, behavioral, clinical, social science, and policy research.
SUBMITTER: Kalgotra P
PROVIDER: S-EPMC7419498 | biostudies-literature | 2020 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA