Unknown

Dataset Information

0

An unbiased, efficient sleep-wake detection algorithm for a population with sleep disorders: change point decoder.


ABSTRACT:

Study objectives

The usage of wrist-worn wearables to detect sleep-wake states remains a formidable challenge, particularly among individuals with disordered sleep. We developed a novel and unbiased data-driven method for the detection of sleep-wake and compared its performance with the well-established Oakley algorithm (OA) relative to polysomnography (PSG) in elderly men with disordered sleep.

Methods

Overnight in-lab PSG from 102 participants was compared with accelerometry and photoplethysmography simultaneously collected with a wearable device (Empatica E4). A binary segmentation algorithm was used to detect change points in these signals. A model that estimates sleep or wake states given the changes in these signals was established (change point decoder, CPD). The CPD's performance was compared with the performance of the OA in relation to PSG.

Results

On the testing set, OA provided sleep accuracy of 0.85, wake accuracy of 0.54, AUC of 0.67, and Kappa of 0.39. Comparable values for CPD were 0.70, 0.74, 0.78, and 0.40. The CPD method had sleep onset latency error of -22.9 min, sleep efficiency error of 2.09%, and underestimated the number of sleep-wake transitions with an error of 64.4. The OA method's performance was 28.6 min, -0.03%, and -17.2, respectively.

Conclusions

The CPD aggregates information from both cardiac and motion signals for state determination as well as the cross-dimensional influences from these domains. Therefore, CPD classification achieved balanced performance and higher AUC, despite underestimating sleep-wake transitions. The CPD could be used as an alternate framework to investigate sleep-wake dynamics within the conventional time frame of 30-s epochs.

SUBMITTER: Cakmak AS 

PROVIDER: S-EPMC7420526 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

An unbiased, efficient sleep-wake detection algorithm for a population with sleep disorders: change point decoder.

Cakmak Ayse S AS   Da Poian Giulia G   Willats Adam A   Haffar Ammer A   Abdulbaki Rami R   Ko Yi-An YA   Shah Amit J AJ   Vaccarino Viola V   Bliwise Donald L DL   Rozell Christopher C   Clifford Gari D GD  

Sleep 20200801 8


<h4>Study objectives</h4>The usage of wrist-worn wearables to detect sleep-wake states remains a formidable challenge, particularly among individuals with disordered sleep. We developed a novel and unbiased data-driven method for the detection of sleep-wake and compared its performance with the well-established Oakley algorithm (OA) relative to polysomnography (PSG) in elderly men with disordered sleep.<h4>Methods</h4>Overnight in-lab PSG from 102 participants was compared with accelerometry and  ...[more]

Similar Datasets

| S-EPMC7801620 | biostudies-literature
| S-EPMC6853391 | biostudies-literature
| S-EPMC4316645 | biostudies-literature
| S-EPMC4582061 | biostudies-literature
| S-EPMC7653065 | biostudies-literature
| S-EPMC4703970 | biostudies-literature
| S-EPMC9261071 | biostudies-literature
| S-EPMC8784328 | biostudies-literature
| S-EPMC8564004 | biostudies-literature
| S-EPMC6040804 | biostudies-literature