Unknown

Dataset Information

0

A Prognostic Nomogram Combining Immune-Related Gene Signature and Clinical Factors Predicts Survival in Patients With Lung Adenocarcinoma.


ABSTRACT: The existence of tumor heterogeneity and complex carcinogenic mechanisms in lung adenocarcinoma (LUAD) make the most commonly used TNM staging system unable to well-interpret the prognosis of patients. Using transcriptome profiling and clinical data from The Cancer Genome Atlas (TCGA) database, we constructed an immune signature based on a multivariate Cox analysis (stepwise model). We estimated the half-maximal inhibitory concentration (IC50) of chemotherapeutic drugs in patients according to the pRRophetic algorithm. Gene-set variation analysis (GSVA) was used to reveal pathway enrichment between groups. Moreover, immune microenvironment landscape was described by single-sample gene-set enrichment analysis (ssGSEA) and CIBERSORT and systematically correlated with genomic of these patients. A prognostic nomogram combining the immune signature and TNM stage to predict the prognosis was developed by multivariate Cox regression. The novel signature with four immune-related genes (MAL, MS4A1, OAS1, and WFDC2) had good robustness, which can accurately distinguish between high- and low-risk patients. Compared with low-risk patients, high-risk patients with a worse prognosis (5-year OS: 46.5 vs. 59.4%, p = 0.002) could benefit more from immunotherapy and the application of common chemotherapeutic agents such as cisplatin and paclitaxel (Wilcoxon test, all p < 0.05). There were significant differences in tumor immune microenvironment and metabolic pathways between the two groups. Additionally, the constructed nomogram had reliable predictive performance with the C-index of 0.725 (95% CI = 0.668-0.781) in the development set (n = 500), 0.793 (95% CI = 0.728-0.858) in the internal validation set (n = 250) and 0.679 (95% CI = 0.644-0.714) in the external validation set (n = 442). The corresponding calibration curves also showed good consistency. To sum up, we developed an immune-related gene signature and comprehensively evaluated LUAD immune landscape and metabolic pathways. Effective differentiation of high- and low-risk patients and accurate construction of nomogram would be helpful to the development of individualized treatment strategies.

SUBMITTER: Song C 

PROVIDER: S-EPMC7424034 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Prognostic Nomogram Combining Immune-Related Gene Signature and Clinical Factors Predicts Survival in Patients With Lung Adenocarcinoma.

Song Congkuan C   Guo Zixin Z   Yu Donghu D   Wang Yujin Y   Wang Qingwen Q   Dong Zhe Z   Hu Weidong W  

Frontiers in oncology 20200806


The existence of tumor heterogeneity and complex carcinogenic mechanisms in lung adenocarcinoma (LUAD) make the most commonly used TNM staging system unable to well-interpret the prognosis of patients. Using transcriptome profiling and clinical data from The Cancer Genome Atlas (TCGA) database, we constructed an immune signature based on a multivariate Cox analysis (stepwise model). We estimated the half-maximal inhibitory concentration (IC50) of chemotherapeutic drugs in patients according to t  ...[more]

Similar Datasets

| S-EPMC6914845 | biostudies-literature
| S-EPMC8185867 | biostudies-literature
| S-EPMC8183047 | biostudies-literature
| S-EPMC7206750 | biostudies-literature
| S-EPMC9114646 | biostudies-literature
| S-EPMC10726878 | biostudies-literature
| S-EPMC6003292 | biostudies-literature
| S-EPMC9850667 | biostudies-literature
| S-EPMC8260977 | biostudies-literature
| S-EPMC9013292 | biostudies-literature