Unknown

Dataset Information

0

Doping of MoTe2 via Surface Charge Transfer in Air.


ABSTRACT: Doping is a key process by which the concentration and type of majority carriers can be tuned to achieve desired conduction properties. The common way of doping is via bulk impurities, as in the case of silicon. For van der Waals bonded semiconductors, control over bulk impurities is not as well developed, because they may either migrate between the layers or bond with the surfaces or interfaces becoming undesired scattering centers for carriers. Herein, we investigate by means of Kelvin probe force microscopy (KPFM) and density functional theory calculations (DFT) the doping of MoTe2 via surface charge transfer occurring in air. Using DFT, we show that oxygen molecules physisorb on the surface and increase its work function (compared to pristine surfaces) toward p-type behavior, which is consistent with our KPFM measurements. The surface charge transfer doping (SCTD) driven by adsorbed oxygen molecules can be easily controlled or reversed through thermal annealing of the entire sample. Furthermore, we also demonstrate local control of the doping by contact electrification. As a reversible and controllable nanoscale physisorption process, SCTD can thus open new avenues for the emerging field of 2D electronics.

SUBMITTER: Stan G 

PROVIDER: S-EPMC7425619 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Doping of MoTe<sub>2</sub> via Surface Charge Transfer in Air.

Stan Gheorghe G   Ciobanu Cristian V CV   Likith Sri Ranga Jai SRJ   Rani Asha A   Zhang Siyuan S   Hacker Christina A CA   Krylyuk Sergiy S   Davydov Albert V AV  

ACS applied materials & interfaces 20200402 15


Doping is a key process by which the concentration and type of majority carriers can be tuned to achieve desired conduction properties. The common way of doping is via bulk impurities, as in the case of silicon. For van der Waals bonded semiconductors, control over bulk impurities is not as well developed, because they may either migrate between the layers or bond with the surfaces or interfaces becoming undesired scattering centers for carriers. Herein, we investigate by means of Kelvin probe f  ...[more]

Similar Datasets

| S-EPMC10222443 | biostudies-literature
| S-EPMC9542699 | biostudies-literature
| S-EPMC8746604 | biostudies-literature
| S-EPMC8005820 | biostudies-literature
| S-EPMC6685470 | biostudies-literature
| S-EPMC4585939 | biostudies-literature
| S-EPMC6544616 | biostudies-literature
| S-EPMC6625110 | biostudies-literature
| S-EPMC7116043 | biostudies-literature
| S-EPMC7761516 | biostudies-literature