Project description:Identifying protein biomarkers for chronic obstructive pulmonary disease (COPD) has been challenging. Most previous studies have utilized individual proteins or pre-selected protein panels measured in blood samples. To identify COPD protein biomarkers by applying comprehensive mass spectrometry proteomics in lung tissue samples. We utilized mass spectrometry proteomic approaches to identify protein biomarkers from 152 lung tissue samples representing COPD cases and controls.
Project description:Diaphragm muscles in Chronic Obstructive Pulmonary Disease (COPD) patients undergo an adaptive fast to slow transformation that includes cellular adaptations. This project studies the signaling mechanisms responsible for this transformation. Keywords: other
Project description:RationaleDendritic cells (DCs) have not been well studied in chronic obstructive pulmonary disease (COPD), yet their integral role in activating and differentiating T cells makes them potential participants in COPD pathogenesis.ObjectivesTo determine the expression of maturation molecules by individual DC subsets in relationship to COPD stage and to expression of the acute activation marker CD69 by lung CD4(+) T cells.MethodsWe nonenzymatically released lung leukocytes from human surgical specimens (n = 42) and used flow cytometry to identify three DC subsets (mDC1, mDC2, and pDC) and to measure their expression of three costimulatory molecules (CD40, CD80 and CD86) and of CD83, the definitive marker of DC maturation. Spearman nonparametric correlation analysis was used to identify significant correlations between expression of DC maturation molecules and COPD severity.Measurements and main resultsExpression of CD40 by mDC1 and mDC2 and of CD86 by mDC2 was high regardless of GOLD stage, but CD80 and CD83 on these two DC subsets increased with disease progression. pDC also showed significant increases in expression of CD40 and CD80. Expression of all but one of the DC molecules that increased with COPD severity also correlated with CD69 expression on lung CD4(+) T cells from the same patients, with the exception of CD83 on mDC2.ConclusionsThis cross-sectional study implies that COPD progression is associated with significant increases in costimulatory molecule expression by multiple lung DC subsets. Interactions with lung DCs may contribute to the immunophenotype of CD4(+) T cells in advanced COPD. Clinical trial registered with www.clinicaltrials.gov (NCT00281229).
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients. A five chip study using total RNA recovered from Peripheral Blood Mononuclear Cell of Peripheral Blood.Evaluating the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10 after the hospital admission, to compared with healthy controls or patients with stable COPD. Slides were scanned at 5 μm/pixel resolution using an Axon GenePix 4000B scanner (Molecular Devices Corporation) piloted by GenePix Pro 6.0 software (Axon). Scanned images (TIFF format) were then imported into NimbleScan software (version 2.5) for grid alignment and expression data analysis. Expression data were normalized through quantile normalization and the Robust Multichip Average (RMA) algorithm included in the NimbleScan software. The Probe level (*_norm_RMA.pair) files and Gene level (*_RMA.calls) files were generated after normalization.
Project description:This experiment was carried out to see if there were any miRNA expression differences in pulmonary endothelial cells between patients with and without COPD. COPD is an inflammatory condition and although much work has previously been performed to investigate the inflammatory cells in COPD there has not been as much research looking at the endothelium through which inflammatory cells must pass through to reach the lung tissue. In this experiment pulmonary endothelial cells were extracted from whole lung tissue removed at the time of cardiothoracic surgery. This was performed for patients with and without COPD. RNA was extracted using the Qiagen microRNeasy kits prior to transferring to the University of Birmingham Biosciences department who performed RNA labelling and ran the microarrays. Once the microarrays were performed quality was checked using ArrayQualityMetrics and the COPD group was compared to the non-COPD group using SAM. The experiment was then repeated using another patient group. MiRNAs of interest were validated with qPCR initially before moving on to functional work.
Project description:Chronic obstructive pulmonary disease (COPD) is a critical condition with high morbidity and mortality. Although several medications are available, there are no definite treatments. However, recent advances in the understanding of stem and progenitor cells in the lung, and molecular changes during re-alveolization after pneumonectomy, have made it possible to envisage the regeneration of damaged lungs. With this background, numerous studies of stem cells and various stimulatory molecules have been undertaken, to try and regenerate destroyed lungs in animal models of COPD. Both the cell and drug therapies show promising results. However, in contrast to the successes in laboratories, no clinical trials have exhibited satisfactory efficacy, although they were generally safe and tolerable. In this article, we review the previous experimental and clinical trials, and summarize the recent advances in lung regeneration therapy for COPD. Furthermore, we discuss the current limitations and future perspectives of this emerging field.
Project description:UnlabelledCD56+ natural killer (NK) and CD56+ T cells, from sputum or bronchoalveolar lavage of subjects with chronic obstructive pulmonary disease (COPD) are more cytotoxic to highly susceptible NK targets than those from control subjects. Whether the same is true in lung parenchyma, and if NK activity actually contributes to emphysema progression are unknown. To address these questions, we performed two types of experiments on lung tissue from clinically-indicated resections (n?=?60). First, we used flow cytometry on fresh single-cell suspension to measure expression of cell-surface molecules (CD56, CD16, CD8, NKG2D and NKp44) on lung lymphocytes and of the 6D4 epitope common to MICA and MICB on lung epithelial (CD326+) cells. Second, we sequentially isolated CD56+, CD8+ and CD4+ lung lymphocytes, co-cultured each with autologous lung target cells, then determined apoptosis of individual target cells using Annexin-V and 7-AAD staining. Lung NK cells (CD56+ CD3-) and CD56+ T cells (CD56+ CD3+) were present in a range of frequencies that did not differ significantly between smokers without COPD and subjects with COPD. Lung NK cells had a predominantly "cytotoxic" CD56+ CD16+ phenotype; their co-expression of CD8 was common, but the percentage expressing CD8 fell as FEV1 % predicted decreased. Greater expression by autologous lung epithelial cells of the NKG2D ligands, MICA/MICB, but not expression by lung CD56+ cells of the activating receptor NKG2D, correlated inversely with FEV1 % predicted. Lung CD56+ lymphocytes, but not CD4+ or CD8+ conventional lung T cells, rapidly killed autologous lung cells without additional stimulation. Such natural cytotoxicity was increased in subjects with severe COPD and was unexplained in multiple regression analysis by age or cancer as indication for surgery. These data show that as spirometry worsens in COPD, CD56+ lung lymphocytes exhibit spontaneous cytotoxicity of autologous structural lung cells, supporting their potential role in emphysema progression.Trial registrationClinicalTrials.gov NCT00281229.
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients.
Project description:Quantitative features that can currently be obtained from medical imaging do not provide a complete picture of Chronic Obstructive Pulmonary Disease (COPD). In this paper, we introduce a novel analytical tool based on persistent homology that extracts quantitative features from chest CT scans to describe the geometric structure of the airways inside the lungs. We show that these new radiomic features stratify COPD patients in agreement with the GOLD guidelines for COPD and can distinguish between inspiratory and expiratory scans. These CT measurements are very different to those currently in use and we demonstrate that they convey significant medical information. The results of this study are a proof of concept that topological methods can enhance the standard methodology to create a finer classification of COPD and increase the possibilities of more personalized treatment.