Project description:Background and objectiveThe coronavirus disease of 2019 (COVID-19) is highly infectious and mainly involves the respiratory system, with some patients rapidly progress to acute respiratory distress syndrome (ARDS), which is the leading cause of death in COVID-19 patients. Hence, fully understanding the features of COVID-19-related ARDS (CARDS) and early management of this disease would improve the prognosis and reduce the mortality of severe COVID-19. With the development of recent studies which have focused on CARDS, whether CARDS is "typical" or "atypical" ARDS has become a hotly debated topic.MethodsWe searched for relevant literature from 1999 to 2021 published in PubMed by using the following keywords and their combinations: "COVID-19", "CARDS", "ARDS", "pathophysiological mechanism", "clinical manifestations", "prognosis", and "clinical trials". Then, we analyzed, compared and highlighted the differences between classic ARDS and CARDS from all of the aspects above.Key content and findingsClassical ARDS commonly occurs within 1 week after a predisposing cause, yet the median time from symptoms onset to CARDS is longer than that of classical ARDS, manifesting within a period of 9.0-12.0 days. Although the lung mechanics exhibited in CARDS grossly match those of classical ARDS, there are some atypical manifestations of CARDS: the severity of hypoxemia seemed not to be proportional to injury of lung mechanics and an increase of thrombogenic processes. Meanwhile, some patients' symptoms do not correspond with the extent of the organic injury: a chest computed tomography (CT) will reveal the severe and diffuse lung injuries, yet the clinical presentations of patients can be mild.ConclusionsDespite the differences between the CARDS and ARDS, in addition to the treatment of antivirals, clinicians should continue to follow the accepted evidence-based framework for managing all ARDS cases, including CARDS.
Project description:Mesenchymal stromal cells are a potential therapeutic for Acute Respiratory Distress Syndrome due to COVID-19, with pleiotropic immunomodulatory and reparative properties.This study investigated the safety and efficacy of ORBCEL-C (CD362 enriched umbilical cord-derived Mesenchymal Stromal Cells) in this patient population.
Project description:As the number of confirmed cases and resulting death toll of the COVID-19 pandemic continue to increase around the globe - especially with the emergence of new mutations of the SARS-CoV-2 virus in addition to the known alpha, beta, gamma, delta and omicron variants - tremendous efforts continue to be dedicated to the development of interventive therapeutics to mitigate infective symptoms or post-viral sequelae in individuals for which vaccines are not accessible, viable or effective in the prevention of illness. Many of these investigations aim to target the associated acute respiratory distress syndrome, or ARDS, which induces damage to lung epithelia and other physiologic systems and is associated with progression in severe cases. Recently, stem cell-based therapies have demonstrated preliminary efficacy against ARDS based on a number of preclinical and preliminary human safety studies, and based on promising outcomes are now being evaluated in phase II clinical trials for ARDS. A number of candidate stem cell therapies have been found to exhibit low immunogenicity, coupled with inherent tropism to injury sites. In recent studies, these have demonstrated the ability to modulate suppression of pro-inflammatory cytokine signals such as those characterizing COVID-19-associated ARDS. Present translational studies are aiming to optimize the safety, efficacy and delivery to fully validate stem cell-based strategies targeting COVID-19 associated ARDS for viable clinical application.