Integrative taxonomy revisits the ontogeny and trophic niches of Rimicaris vent shrimps.
Ontology highlight
ABSTRACT: Among hydrothermal vent species, Rimicaris exoculata is one of the most emblematic, hosting abundant and diverse ectosymbioses that provide most of its nutrition. Rimicaris exoculata co-occurs in dense aggregates with the much less abundant Rimicaris chacei in many Mid-Atlantic Ridge vent fields. This second shrimp also houses ectosymbiotic microorganisms but has a mixotrophic diet. Recent observations have suggested potential misidentifications between these species at their juvenile stages, which could have led to misinterpretations of their early-life ecology. Here, we confirm erroneous identification of the earliest stages and propose a new set of morphological characters unambiguously identifying juveniles of each species. On the basis of this reassessment, combined use of C, N and S stable isotope ratios reveals distinct ontogenic trophic niche shifts in both species, from photosynthesis-based nutrition before settlement, towards a chemosynthetic diet afterwards. Furthermore, isotopic compositions in the earliest juvenile stages suggest differences in larval histories. Each species thus exhibits specific early-life strategies that would, without our re-examination, have been interpreted as ontogenetic variations. Overall, our results provide a good illustration of the identification issues persisting in deep-sea ecosystems and the importance of integrative taxonomy in providing an accurate view of fundamental aspects of the biology and ecology of species inhabiting these environments.
SUBMITTER: Methou P
PROVIDER: S-EPMC7428246 | biostudies-literature | 2020 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA