Ontology highlight
ABSTRACT:
SUBMITTER: Joel S
PROVIDER: S-EPMC7431040 | biostudies-literature | 2020 Aug
REPOSITORIES: biostudies-literature
Joel Samantha S Eastwick Paul W PW Allison Colleen J CJ Arriaga Ximena B XB Baker Zachary G ZG Bar-Kalifa Eran E Bergeron Sophie S Birnbaum Gurit E GE Brock Rebecca L RL Brumbaugh Claudia C CC Carmichael Cheryl L CL Chen Serena S Clarke Jennifer J Cobb Rebecca J RJ Coolsen Michael K MK Davis Jody J de Jong David C DC Debrot Anik A DeHaas Eva C EC Derrick Jaye L JL Eller Jami J Estrada Marie-Joelle MJ Faure Ruddy R Finkel Eli J EJ Fraley R Chris RC Gable Shelly L SL Gadassi-Polack Reuma R Girme Yuthika U YU Gordon Amie M AM Gosnell Courtney L CL Hammond Matthew D MD Hannon Peggy A PA Harasymchuk Cheryl C Hofmann Wilhelm W Horn Andrea B AB Impett Emily A EA Jamieson Jeremy P JP Keltner Dacher D Kim James J JJ Kirchner Jeffrey L JL Kluwer Esther S ES Kumashiro Madoka M Larson Grace G Lazarus Gal G Logan Jill M JM Luchies Laura B LB MacDonald Geoff G Machia Laura V LV Maniaci Michael R MR Maxwell Jessica A JA Mizrahi Moran M Muise Amy A Niehuis Sylvia S Ogolsky Brian G BG Oldham C Rebecca CR Overall Nickola C NC Perrez Meinrad M Peters Brett J BJ Pietromonaco Paula R PR Powers Sally I SI Prok Thery T Pshedetzky-Shochat Rony R Rafaeli Eshkol E Ramsdell Erin L EL Reblin Maija M Reicherts Michael M Reifman Alan A Reis Harry T HT Rhoades Galena K GK Rholes William S WS Righetti Francesca F Rodriguez Lindsey M LM Rogge Ron R Rosen Natalie O NO Saxbe Darby D Sened Haran H Simpson Jeffry A JA Slotter Erica B EB Stanley Scott M SM Stocker Shevaun S Surra Cathy C Ter Kuile Hagar H Vaughn Allison A AA Vicary Amanda M AM Visserman Mariko L ML Wolf Scott S
Proceedings of the National Academy of Sciences of the United States of America 20200727 32
Given the powerful implications of relationship quality for health and well-being, a central mission of relationship science is explaining why some romantic relationships thrive more than others. This large-scale project used machine learning (i.e., Random Forests) to 1) quantify the extent to which relationship quality is predictable and 2) identify which constructs reliably predict relationship quality. Across 43 dyadic longitudinal datasets from 29 laboratories, the top relationship-specific ...[more]