Ontology highlight
ABSTRACT: Background
Gastrointestinal nematodes could release excretory-secretory (ES) proteins into the host environment to ensure their survival. These ES proteins act as immunomodulators to suppress or subvert the host immune response via the impairment of immune cell functions, especially in chronic infections. In our preliminary study, Haemonchus contortus adhesion-regulating molecule 1 (HcADRM1) was identified from H. contortus ES proteins (HcESPs) that interacted with host T cells via liquid chromatography-tandem mass spectrometry analysis. However, little is known about HcADRM1 as an ES protein which may play a pivotal role at the parasite-host interface.Methods
Based on bioinformatics approaches, multiple amino acid sequence alignment was conducted and the evolutionary relationship of HcADRM1 with ADRM1 orthologues was extrapolated. Employing RT-qPCR and immunohistochemistry assays, temporal transcriptional and spatial expression profiles of HcADRM1 were investigated. Using immunostaining approaches integrated with immunological bioassays, the immunomodulatory potentials of HcADRM1 on goat T cells were assessed.Results
We hereby demonstrated that HcADRM1 with immunodiagnostic utility was a mammalian ADRM1 orthologue abundantly expressed at all developmental stages of H. contortus. Given the implications of ADRM1 proteins in cell growth, survival and development, we further investigated the immunomodulatory property of HcADRM1 as an individual ES protein acting at the parasite-host interface. The rHcADRM1 stimuli notably suppressed T cell viability, promoted intrinsic and extrinsic T cell apoptosis, inhibited T cell proliferation and induced cell cycle arrest at G1 phase. Simultaneously, rHcADRM1 stimuli exerted critical controls on T cell cytokine secretion profiles, predominantly by restraining the secretions of interleukin (IL)-4, IL-10 and interferon-gamma.Conclusions
Importantly, HcADRM1 protein may have prophylactic potential for anti-H. contortus vaccine development. Together, these findings may contribute to the clarification of molecular and immunomodulatory traits of ES proteins, as well as improvement of our understanding of parasite immune evasion mechanism in H. contortus-host biology.
SUBMITTER: Lu M
PROVIDER: S-EPMC7432459 | biostudies-literature |
REPOSITORIES: biostudies-literature