Unknown

Dataset Information

0

Machine Learning Magnetic Parameters from Spin Configurations.


ABSTRACT: Hamiltonian parameters estimation is crucial in condensed matter physics, but is time- and cost-consuming. High-resolution images provide detailed information of underlying physics, but extracting Hamiltonian parameters from them is difficult due to the huge Hilbert space. Here, a protocol for Hamiltonian parameters estimation from images based on a machine learning (ML) architecture is provided. It consists in learning a mapping between spin configurations and Hamiltonian parameters from a small amount of simulated images, applying the trained ML model to a single unexplored experimental image to estimate its key parameters, and predicting the corresponding materials properties by a physical model. The efficiency of the approach is demonstrated by reproducing the same spin configuration as the experimental one and predicting the coercive field, the saturation field, and even the volume of the experiment specimen accurately. The proposed approach paves a way to achieve a stable and efficient parameters estimation.

SUBMITTER: Wang D 

PROVIDER: S-EPMC7435232 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Machine Learning Magnetic Parameters from Spin Configurations.

Wang Dingchen D   Wei Songrui S   Yuan Anran A   Tian Fanghua F   Cao Kaiyan K   Zhao Qizhong Q   Zhang Yin Y   Zhou Chao C   Song Xiaoping X   Xue Dezhen D   Yang Sen S  

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 20200701 16


Hamiltonian parameters estimation is crucial in condensed matter physics, but is time- and cost-consuming. High-resolution images provide detailed information of underlying physics, but extracting Hamiltonian parameters from them is difficult due to the huge Hilbert space. Here, a protocol for Hamiltonian parameters estimation from images based on a machine learning (ML) architecture is provided. It consists in learning a mapping between spin configurations and Hamiltonian parameters from a smal  ...[more]

Similar Datasets

| S-EPMC7005704 | biostudies-literature
| S-EPMC4479612 | biostudies-other
| S-EPMC8299699 | biostudies-literature
| S-EPMC9794737 | biostudies-literature
2013-01-01 | E-GEOD-29210 | biostudies-arrayexpress
| S-EPMC7311053 | biostudies-literature
| S-EPMC7702702 | biostudies-literature
| S-EPMC5736185 | biostudies-other
| S-EPMC6778980 | biostudies-literature
| S-EPMC9933351 | biostudies-literature